Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Precast concrete products represent between 10 and 15 percent of the North American cement and concrete market. While the figure in some European markets is 40 percent, most concrete is mixed and poured at construction sites outside the control of a factory setting (and Carbon Sense Solutions’ process). “Considering concrete is the most abundant man-made material on earth, and that the precast market is growing, the estimated carbon dioxide storage potential of this is 500 megatons a year,” Niven says. “That is on par with other global carbon dioxide mitigation solutions, such as carbon capture and geological storage.”

Research professor Tarun Naik, director of the University of Wisconsin-Milwaukee’s Center for By-Products Utilization, says that all concrete absorbs carbon dioxide over time if left to cure naturally–but only up to a point. The gas usually penetrates the first one or two millimeters of the concrete’s surface before forming a hard crust that blocks any further absorption. Naik says that something as simple as using less sand in a concrete mix can increase the porosity of the finished product and allow more ambient carbon dioxide to be absorbed into the concrete. It’s simpler than Carbon Sense Solutions’ accelerated curing process and can be applied to a much larger market, he says.

Other groups are taking aim at emissions from the cement-making process itself. Researchers at MIT are seeking new ingredients in cement that are less energy intensive, while companies such as Montreal’s CO2 Solution have an enzymatic approach that captures carbon-dioxide emissions from cement-factory flue stacks, converts the greenhouse gas into limestone, and feeds it back into the cement-making process. Calera, backed by venture capitalist Vinod Khosla, even claims that it can remove a ton of carbon dioxide from the environment for every ton of cement it produces.


7 comments. Share your thoughts »

Credit: Carbon Sense Solutions

Tagged: Energy, carbon dioxide, global warming, greenhouse gas emissions, concrete

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me