Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Tissue engineers are ambitious. If they had their way, a dialysis patient could receive a new kidney made in the lab from his own cells, instead of waiting for a donor organ that his immune system might reject. Likewise, a diabetic could, with grafts of lab-made pancreatic tissue, be given the ability to make insulin again. But tissue engineering has stalled in part because bioengineers haven’t been able to replicate the structural complexity of human tissues. Now researchers have taken an important first step toward building complex tissues from the bottom up by creating what they call living Legos. These building blocks, biofriendly gels of various shapes studded with cells, can self-assemble into complex structures resembling those found in tissues.

“Living tissues have repeating functional units,” says Ali Khademhosseini, a bioengineer at Harvard Medical School. The liver, for example, is made up of repeated hexagonal lobes. Each has a central branching vessel that brings in blood for filtration; the vessel and its branches are surrounded by toxin-filtering cells surrounded by canals that transport filtered blood to other vessels leading out of the organ. Traditional approaches to tissue engineering, says Khademhosseini, “rely on the cells to self-assemble and re-create structures found in the body.” Bioengineers seed cells onto the outside of polymer scaffolds in the hopes that they will migrate inside and organize themselves. Cells do self-organize to some extent, but such top-down attempts have had limited success.

Khademhosseini is trying to re-create complex tissue structures by carefully controlling cell organization from the bottom up. He mixes cells into a solution of a biocompatible polymer called polyethylene glycol, then pours the mixture into molds shaped like blocks, stars, spheres, or any other shape. When exposed to a flash of light, the polymer blocks solidify. The living Legos can then be built up into more-complex structures and exposed to another flash of light that bonds them together. But assembly is painstaking: each block is only about a hundred micrometers across.

So Khademhosseini and a group of researchers at MIT and Harvard have come up with a simple two-step process to make the living Legos self-assemble. Their method, described in a paper published today in the Proceedings of the National Academy of Sciences, relies on the basic fact that water and oil don’t mix. When water is dropped into a pool of oil, it will form a sphere, the shape that minimizes its interaction with the oil, says Khademhosseini. The polymer building blocks are hydrophilic–they easily absorb water and resist interacting with oil. But they can’t change their shape, so when Khademhosseini places them in an agitating bath of mineral oil, the blocks clump together in order to minimize their contact with the oil. The polymer blocks, now assembled into branches, cubes, and other shapes, are bonded together with another flash of light. The organization of the resulting structures can be controlled by varying the shape and size of the building blocks and the agitation speed.

2 comments. Share your thoughts »

Credit: Ali Khademhosseini

Tagged: Biomedicine, Materials, MIT, polymers, tissue engineering, self-assembly, TR35

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me