Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Last week’s announcement of the discovery of evidence of water in lunar volcanic glass beads brought back from the moon during the Apollo missions in 1971–a finding that is causing scientists to rethink the conventional theory of the moon’s formation–was made possible by recent advances in an analytical technique called nano secondary ion mass spectroscopy or NanoSIMS.

NanoSIMS, which was developed by the French company CAMECA, is a variation of an established technique called secondary ion mass spectroscopy (SIMS), but it has a higher spatial resolution and can measure a handful of elements simultaneously, says Frank Stadermann, a senior research scientist at the Laboratory for Space Sciences at Washington University, in St. Louis.

With SIMS, a high-energy ion beam is focused on the surface of a sample. The impact of the beam causes atoms to be ejected from the surface; some of the atoms get ionized and then pass through a mass spectrometer that determines the composition of the sample material. The NanoSIMS instrument has an ion beam that can focus down to a diameter of less than one micrometer, whereas previous SIMS technology could only focus down to around 20 micrometers.

While researchers have been using NanoSIMS to study the isotopic composition of small particles, such as planetary dust and volcanic glasses, this is the first time that the technique has been able to detect traces of hydrogen. “The key part was, we developed a method for measuring very low water content on other SIMS instruments and applied the same methodology on the NanoSIMS,” says Erik Hauri, a staff scientist with the Carnegie Institution for Science, in Washington, DC, and one of several authors of the study last week describing evidence of water in lunar samples. “This allowed us to take measurements on a very small spatial scale. The limit for detecting water was about 50 parts per million at best. We developed a way to detect as little as five parts per million of water, and surprisingly, we found up to 46 parts per million in these tiny glass beads.”

The study was published on July 10 in the journal Nature and conducted by scientists from Brown University, Carnegie Institution for Science, and Case Western Reserve University.

1 comment. Share your thoughts »

Credits: Frank Stadermann, Washington University, NASA

Tagged: Computing, moon, hydrogen, water, mass spectrometry

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me