Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A little brain boost is something we could all use now and then. A new option may be on the horizon. Researchers at the National Institute for Neurological Disorders and Stroke, in Bethesda, MD, are studying how applying gentle electrical current to the scalp can improve learning.

Previous small-scale studies have suggested that a stream of current can improve motor function, verbal fluency, and even language learning. To explore how effective such stimulation can be as a learning tool, Eric Wassermann, a neuroscientist at the National Institute for Neurological Disorders and Stroke, is using an approach known as transcranial direct current stimulation (TDCS), in which an electrical current is passed directly to the brain through the scalp and skull. The technology for TDCS, which has been available for decades, is simple and fairly crude. (In the 1960s, it was used to improve mood in people with psychiatric disorders, although that effect hasn’t been repeated in more recent studies.) And in contrast to people undergoing electroconvulsive therapy, a seizure-inducing treatment used for severe depression that requires anesthesia, people undergoing TDCS feel just a slight tingle, if anything.

The device is simple: a nine-volt battery that’s been approved by the Food and Drug Administration for delivering drugs across the skin is connected to large flat sponges that are moistened and then applied to the head. It delivers a gentle 2 to 2.5 milliamps of current spread over a 20 to 50 square millimeter area of the scalp for up to 15 minutes. Little of that current actually reaches the brain–about half is shunted away from the target area, and the other half quickly dissipates as it gets farther from the scalp.

Wassermann’s team targets part of the brain known as the dorsolateral prefrontal cortex, a brain area involved in higher-level organization and planning, as well as in working memory. Because activity in this region has been shown in previous imaging studies to predict an individual’s ability to recall information, the idea is that giving it an electrical boost will enhance memory function.

In preliminary results from the new study, which is part of a larger government-funded project to examine TDCS for cognitive enhancement, researchers found that direct current stimulation could improve memory in participants asked to learn and then recall a list of 12 words. The effect was significant in the early learning stages: in the first few trials, in which participants were given the same list over and over again, people in the treatment group could remember more words. But the learning curve for those working without the device quickly caught up to the zapped learners. “Now we want to see if we can enhance recall, not just encoding,” says Wassermann. “Ultimately, you’d just want to do the stimulation during encoding.”

3 comments. Share your thoughts »

Credit: Brain Stimulation Unit, National Institute of Neurological Disorders and Stroke

Tagged: Biomedicine, learning, cognitive enhancement, brain simulation

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me