Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Computers get faster and communication signals get faster, but the interface between them–where the electrons in the computer circuits are converted into photons for the fiber-optic cable–remains clunky and slow. New transistors that rely on virtual particles called excitons could change that. An exciton is a state of electrical excitement that can pass from one atom to another, much as an electric current does. When an exciton loses energy, it emits a photon, so excitons are good at translating between electrical and optical signals.

“The problem in existing systems is the barrier at the interconnect between the optical signal and the electrical signal,” says Alex High, a graduate student at the University of California, San Diego (UCSD), who conducted the research along with colleagues there and at the University of California, Santa Barbara. “This cuts out that extra step. Because excitons are carriers of light, you can manipulate them, do logic processes on the light in exciton form, and then release that light in another place.”

The researchers have created tiny, supercooled integrated circuits made of gallium arsenide that can send exciton signals in different directions or merge two signals into one–jobs necessary to handle the rudiments of computer logic just as electronic circuits do. “The computation speed by itself may not be much faster” than a conventional chip’s, says Leonid Butov, who led the research. “Where we can gain speed is in the transformation of the photons.” Butov has so far demonstrated a switching speed of 200 picoseconds, which includes both computation time and the transformation of the photons into excitons. The speed of conventional conversion and switching varies with the material, but it’s about an order of magnitude slower than Butov’s switch. (Also on the market is an all-optical switch that doesn’t have to convert optical signals into electrical ones. It has a switching speed of 50 picoseconds, but due to its large size, it can perform only rudimentary operations.) And 200 picoseconds is “not even the final answer yet,” says Butov. “We may be able to make it considerably faster.”

A smoother optical-electronic interface has wide implications. Fiber optics is the most efficient way to carry large amounts of data at the speed of light, and it’s used in a myriad of applications, from telecommunications to temperature sensing to simply carting information from one computer chip to another. But at some point, optical signals almost always need to be converted into electrical signals–whether it’s so your desktop PC can understand them or so they can be amplified during a long trip. Not only is that conversion slow, but the traditional converters are expensive, relatively large, and power hungry.

2 comments. Share your thoughts »

Credits: Butov Lab

Tagged: Computing, Communications, fiber optics, telecom, photons, optical networks

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »