Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Others have obtained much higher sensitivities with nanosensors. Researchers at the Naval Research Laboratory have made carbon-nanotube sensors that detect 50 parts per billion of a sarin-like chemical. Jing Li and her colleagues at the NASA Ames Research Center have made carbon-nanotube- and metal-oxide nanowire-based sensor arrays that detect about four parts per billion of nitrogen dioxide.

The new device, with its parts-per-billion sensitivity, might be less sensitive than others, but it could still find practical use, since parts-per-million levels of sarin can be lethal. More important, it presents the key advance of combining a micro chromatography column and the nanotube sensor into a tiny portable device, Baughman says.

The setup works because of a special coating on the carbon nanotubes. Many chemicals adsorb strongly on uncoated nanotubes, and they either take hours to detach or have to be removed. That is done by exposing the carbon nanotubes to ultraviolet light or heat, says Strano, who points out that “all those things are very slow and costly.” So the researchers coat the carbon nanotubes with an amine, which reduces the strength of the bond between the tube and the chemical that is being detected. As gas molecules flow into the sensor from the chromatograph, they stick to the carbon nanotube but detach in a few milliseconds.

The chemical coating is a quick, low-power way to reuse the carbon nanotubes in the sensor again and again. It takes the carbon nanotubes about 26 seconds to go back to their original state and detect a new gas. That’s pretty fast, Baughman says, adding that the researchers “should be especially proud of their ability to simultaneous achieve ultra-high sensitivity and selectivity in a fast sensor system that is so small that 500 could be placed on the surface of a dime.”

1 comment. Share your thoughts »

Credit: Chang Young Lee, MIT

Tagged: Biomedicine, carbon nanotubes, gas, chemical sensors, nanosensor

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me