Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The new superconductors could also have another crucial advantage, says David Christen, who leads superconductor research at Oak Ridge National Laboratory. While cuprate power cables have to be fabricated as specially designed flat tapes, it might be easier to make wires from iron arsenide semiconductors. “These materials could be more practical than cuprates if it turns out that they’re easier and less expensive to make,” Christen says.

Researchers are also hoping that iron arsenides will help unlock the mystery of how high-temperature superconductors work. That will be key for designing materials with even higher critical temperatures. In superconductors that work at very low temperatures, such as niobium and lead, electrons form pairs below the critical temperature. Atoms or defects in the crystal do not have the energy needed to break the pair and deflect the electrons. So the electron pair zips around the material unimpeded, giving rise to superconductivity. But this pairing theory does not hold for high-temperature copper-oxygen materials.

In their Nature paper, Chien and his colleagues show evidence suggesting that the pairing theory might hold for the iron arsenide superconductors. “The pairing of electrons is the soul of the superconductor,” Chien says. “If the new materials follow the [pairing] theory, then … we will be able to understand the materials a little bit easier.”

More evidence from experiments done with many different iron arsenide compounds will be needed to confirm how the superconductors work, says Pengcheng Dai, a physics professor at the University of Tennessee, in Knoxville. The Johns Hopkins work is “just one piece of the puzzle,” he says. Indeed, while the pairing mechanism of iron arsenides might be different than that of copper-oxygen compounds, the two materials also have similarities. In a recent online paper, also published in Nature, Dai and Lynn showed that the two materials share key magnetic properties. And both materials also have a similar layered structure.

It might be too early to say just how useful the iron arsenide superconductors will be. For now, Dai says that researchers are excited about having broken the 22-year monopoly of cuprates and about having a new high-temperature superconductor to play with.


2 comments. Share your thoughts »

Credit: Hideo Hosono, Tokyo Institute of Technology

Tagged: Computing, Materials, material, power grid, semiconductors, superconductor

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »