Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Software patches, which are sent over the Internet to protect computers from newly discovered security holes, could help the bad guys as well as the good guys, according to research recently presented at the IEEE Symposium on Security and Privacy. The research shows that attackers could use patches to automatically generate software to attack vulnerable computers, employing a process that can take as little as 30 seconds. Since it takes time for patches to reach all the machines that need them, attackers could have a chance to affect large numbers of machines, says David Brumley, an incoming assistant professor at Carnegie Mellon University in the electrical- and computer-engineering department and the lead author of the paper.

As part of their research, Brumley and his colleagues produced malicious code, commonly called an exploit, that could infiltrate computers and launch denial of service attacks. These attacks flood a website so that legitimate users can’t access it. The researchers were also able to gain control of people’s computers remotely. The findings have serious implications for global Internet security and stability. Using this approach, an attacker could quickly and easily gather private information about people and businesses. Moreover, large numbers of infected computers could significantly slow Internet traffic.

Normally, when a security researcher finds a bug in a program, he or she notifies the organization or company responsible for the software. The company creates a patch to correct the problem. Because those patches are often fairly large files, organizations tend to distribute them in stages so as not to overwhelm the central servers providing the patches. Christos Gkantsidis, an associate researcher in the systems and networking group at Microsoft Research, in Cambridge, says that it takes about 24 hours to distribute a patch through Windows Update to 80 percent of the systems that need it. “The problem is that the infrastructure capacity that exists is not enough to serve all the users immediately,” Gkantsidis says. “We currently don’t have technologies that can distribute patches as fast as the worms.” (A worm is one type of computer exploit.) In other words, attackers already have a window of opportunity to infect computers between the time a patch is released and the time it reaches all the systems that need it. Brumley’s research shows that an attacker could infect computers more efficiently during that window by generating exploits automatically.

Brumley says that his system works for patches intended to fix one common type of vulnerability, and has its roots in the methods used to automatically test programs to make sure they perform as intended. The technique analyzes a new patch to discover what changes it is making to the previous version of the software. Once the changes are isolated, the system analyzes them to create a formula that has as its solution values that can be used for an exploit.

5 comments. Share your thoughts »

Credit: Technology Review

Tagged: Computing, computer security, botnets, program verification

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me