Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

By spreading a small amount of graphene, a single-layer flat sheet of carbon atoms, throughout polymers, researchers have made tough, lightweight materials. The composites conduct electricity and can withstand much higher temperatures than the polymers alone.

Polymers can be infused with carbon nanotubes to make materials with similar properties. But graphene could be much cheaper. “You can buy [graphite] in bags for dollars a pound, while single-walled nanotubes are hundreds of dollars per gram,” says Catherine Brinson, a mechanical-engineering professor at Northwestern University, who led the work, which was published online in Nature Nanotechnology.

Graphene might also raise fewer toxicity concerns than carbon nanotubes. A separate Nature Nanotechnology study has found that long carbon nanotubes cause the same toxic reactions in mice as asbestos. The worry is that carbon nanotubes could mimic asbestos fibers, which are thin enough to penetrate into the lungs and cause cancer. Graphene, on the other hand, “is a nanometer only in thickness,” says Lawrence Drzal, director of the Composite Materials and Structures Center at Michigan State University. “They’re relatively large in two other dimensions. They won’t be able to go through blood brain barriers or into cells.”

Graphene-polymer composites would be ideal for making lightweight gasoline tanks and plastic containers that keep food fresh for weeks. They could also be used to make lighter, more fuel-efficient aircraft and car parts, as well as stronger wind turbines, medical implants, and sports equipment. What’s more, they are good electrical conductors and could be used to make transparent conductive coatings for solar cells and displays.

The advance is part of a broader research effort to make nanoparticle-embedded polymers. Carbon and glass fibers have traditionally been used to strengthen polymers– fiberglass is a common example. Unlike with fibers, though, a very small amount of nanoparticles–less than 2 percent of the composite’s volume–is enough to make the polymer stronger and heat resistant. Because less filler is used, the composite can retain the polymer’s stretchability or transparency.

Clay nanoparticles and carbon nanotubes are strong contenders for use in polymer composites. Toyota makes some engine parts from clay-nylon composites, which are stronger and can handle much higher temperatures than nylon can. Carbon-nanotube-infused polymers are used to make baseball bats and golf clubs, and they can be used in car parts such as handles and fenders–parts that are easier to paint electrostatically if they conduct electricity. But the high cost of manufacturing carbon nanotubes has limited their use.

Graphene could be a cheaper alternative. The key breakthrough needed to make the graphene-polymer hybrid was having the right kind of graphene sheets. The researchers needed one or two layers of graphene with a few hydroxyl groups or oxygen atoms dangling on the surface: these help graphene link to the polymer and disperse evenly. Researchers at Princeton University, who are coauthors of the paper, developed a way to isolate such graphene sheets from graphite oxide by expanding the material rapidly at high temperatures.

1 comment. Share your thoughts »

Credit: Nature Nanotechnology

Tagged: Computing, Materials, nanoparticles, carbon nanotubes, polymers, graphene, carbon atoms

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me