Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

When multiple embryos are transferred into a woman’s uterus during in vitro fertilization (IVF) and a single baby is born, there has previously been no way to know which embryo successfully implanted and developed. Now researchers have harnessed DNA fingerprinting, the same technique used to settle paternity suits and implicate criminals, to match an embryo to the baby it ultimately becomes. This technique may help researchers develop tests to more reliably discriminate between viable embryos and their nonviable siblings.

Currently, doctors select embryos for transfer based on a crude visual inspection under the microscope. But this tactic fails some 50 percent of the time. Consequently, multiple embryos are often transferred at one time, to increase the chances of a successful pregnancy. Multiple births, which put both mother and babies at risk, often result.

“The next big advance in IVF is going to come from our ability to select embryos better,” says David Adamson, president of the American Society for Reproductive Medicine, who was not involved in the project. “It will allow us to increase the pregnancy rate and decrease the multiple-pregnancy rate.”

In a study published last week in the journal Human Reproduction, researchers at Monash University, in Australia, led by IVF and stem-cell pioneer Alan Trounson, worked with a group of 48 women undergoing IVF. Five days after fertilization, the researchers used a laser to nick the outer coating of each embryo, known at that stage as a blastocyst. The nick allowed the researchers to extract a small number of cells from the layer of the blastocyst that eventually forms the placenta. The following day, each blastocyst was transferred into the woman’s uterus.

Such embryo biopsies are commonly used in IVF to obtain cells for prenatal genetic screening and diagnosis. But they are usually performed three days after fertilization, when the embryo has just six to eight cells. Because the window between fertilization and successful transfer is narrow, a day-five biopsy is usually too late to allow enough time for the cells to be tested, an informed decision to be made, and the embryo to be transferred. In this study, the biopsied cells were not used to make reproductive decisions, so the embryo could be transferred before test results came in. An earlier biopsy wouldn’t yield enough cells for meaningful analysis.

The researchers zeroed in on a group of 18 women in whom some but not all of the transferred blastocysts implanted and developed into babies. By obtaining each embryo’s DNA fingerprint from the extracted cells and comparing it with each baby’s DNA fingerprint, they could definitively tell which embryos had given rise to healthy babies.

Infertility specialists say that the fingerprinting approach may enable a rigorously controlled study of potential techniques for distinguishing between viable and nonviable embryos, a goal that has thus far proved elusive. Many groups are exploring such techniques; some are hunting for genetic markers specific to viable embryos, while others are pursuing less invasive analyses of the substances that a viable embryo secretes.

1 comment. Share your thoughts »

Credit: NIH

Tagged: Biomedicine, IVF, embryo

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me