Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

By employing a trick normally used to cool high-performance computer chips, IBM researchers have found a way to make concentrated photovoltaic cells that are more efficient in converting the sun’s energy into electricity.

The researchers have shown that it is possible to increase the concentration of light on photovoltaic cells by about ten times without causing them to melt. This, they say, makes it possible to boost the amount of usable electrical energy produced by up to five times.

IBM is not known for its work in solar energy, but that has changed recently, with the rising cost of fuel and the growing interest in renewable alternative energies, says Supratik Guha, lead scientist of photovoltaic research at IBM’s T.J. Watson Research Center, in Yorktown Heights, NJ. “About a year and a half ago, we decided to start looking at photovoltaics,” he says.

The principle behind concentrated photovoltaic cells is to use a large lens to focus light onto a relatively small piece of photovoltaic semiconductor material. The benefit is that only a fraction of the semiconductor material is used, thereby reducing costs.

There are a number of companies marketing such technologies, but one of the main challenges is in coping with the vast amounts of heat produced by the focused sunlight, says Guha. “You’re really heating the chip up. As you raise the temperature of the chip, its efficiency drops, so you’ve got to keep the temperature down.” There are generally two ways to do this: either by using passive heat sinks–metal blocks that draw the heat away from the cell–or, for higher-temperature systems, by using water cooling, in which water is pumped through a metal heat sink to draw the thermal energy away more efficiently.

In many respects, this is a problem very similar to cooling computer chips–something with which IBM has a long history, says Guha. State-of-the-art chips now kick out about 100 watts per square centimeter, which is similar to what concentrated photovoltaic cells have to endure, he says.

So Guha adapted an IBM-developed material currently used for chips to improve the heat transfer between the photovoltaic cell and a water-cooled heat sink.

“If you place the chip on a copper heat sink, the interfacial heat transfer isn’t good enough to keep the temperature down,” says Guha. This is because microscopic indentations in both surfaces means that there will be relatively little surface contact between the faces. So photovoltaic companies tend to use various organic pastes to act as thermal interfaces. The problem is that such materials aren’t particularly efficient at transferring heat.

12 comments. Share your thoughts »

Credits: IBM T.J. Watson Research Center

Tagged: Energy, energy, solar cells

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me