Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

New research shows that formic acid could be used as a safe, easy-to-transport source of hydrogen for fuel cells. Matthias Beller and his colleagues at the Leibniz Institute of Catalysis, in Rostock, Germany, have found a way to convert formic acid, a common preservative and antibacterial agent, into hydrogen gas at low temperatures.

While hydrogen produced using this method might not find use in fuel-cell vehicles anytime soon, the researchers say that the process could produce sufficient quantities for micro fuel cells that power portable electronic devices, such as cell phones and laptops.

The challenge of producing, storing, and transporting hydrogen affordably has kept fuel cells from becoming popular. Instead of transporting hydrogen gas, it is more practical to have a hydrogen-containing material that can be broken down to generate the gas where it is needed. Currently, methane and methanol top the list of hydrogen sources for fuel-cell vehicles. They are typically broken down via steam reforming, which requires temperatures of more than 200 °C and a reforming unit.

Processes that work at cooler temperatures would not need a reformer or much energy, and therefore could be more suitable for producing hydrogen for smaller fuel cells that power portable electronic devices. The new process, which Beller and his colleagues outline in Angewandte Chemie, works at temperatures of 26 to 40 °C. The researchers mix formic acid with amines and expose the mixture to a ruthenium-based catalyst, which breaks down the acid into hydrogen and carbon dioxide.

“The advantage of formic acid is [that] it’s a liquid … and is relatively easily handled,” Beller says. While the pure acid is corrosive, the mixture of the acid with amines is benign, he says.

Formic acid can also be used directly in a fuel cell. That might be easier because it saves the extra step of first converting it into hydrogen. Tekion, based in Burnaby, Canada, is working with Germany-based chemical giant BASF, the largest producer of formic acid, to commercialize a fuel cell that uses formic acid directly. Tekion, which does not have a product on the market yet, claims that its formic-acid fuel cells are smaller and less complex than direct methanol fuel cells. But direct formic-acid fuel cells have the same drawback that makes methanol fuel cells expensive: both technologies are less efficient than hydrogen fuel cells.

Beller points out that using formic acid to make hydrogen also has drawbacks. Compared with methane and methanol, formic acid has much less hydrogen. If you use all the hydrogen in a kilogram of methanol, you get 4.19 kilowatt-hours of energy, while the hydrogen in a kilogram of formic acid gives 1.45 kilowatt-hours.

15 comments. Share your thoughts »

Credit: Wiley-VCH

Tagged: Energy, hydrogen, fuel cells, cellphone, laptops, portable electronics

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me