Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

For a patient with end-stage heart failure, an implantable pump that helps circulate the blood can mean added months or even years of life. Now CircuLite is developing an implantable pump that weighs just one-sixth as much as its smallest predecessor. About the size of a AA battery, it could ultimately be implanted through a catheterization procedure that is far less invasive than the operations used to place today’s pumps. It could thus be used to treat patients in earlier stages of heart failure, for whom implantation surgery had previously been too risky.

Invented more than two decades ago, the earliest support pumps–or ventricular assist devices (VADs)–kept patients tethered to a large external console and a blood-thinning machine. A second generation of VADs, still widely in use, has spinning rotors that continuously draw in blood. Third-generation devices are much smaller, using magnetic or hydrostatic forces to float the rotor within the blood. That eliminates friction between the pump’s parts, which in earlier generations led to breakdowns and blood clots. But implanting these devices still requires sawing through the breastbone and placing the patient on heart-lung bypass.

CircuLite’s pump, called Synergy, uses a combination of magnetic and hydrostatic forces to suspend the rotor. But it differs from a VAD in that it sucks blood from a different chamber of the heart and returns it through a different artery. Because it is designed for patients in an earlier stage of heart failure, whose hearts can still pump a modest amount of blood on their own, the Synergy pump gets by on a smaller, less powerful motor. Unlike implantable VADs, which rest deep inside the chest cavity, the Synergy pump is small enough to be placed near the skin’s surface.

“It’s a very small, very well engineered device,” says Yoshifumi Naka, director of the Mechanical Circulatory Support Program at Columbia University Medical Center.

The device began clinical testing in Europe in June 2007 and has been implanted in nine patients so far. All nine have survived to date, and five have successfully gone on to heart transplants. CircuLite estimates that U.S. clinical trials will begin in early 2009.

The pump itself may sit just beneath the skin, but its inflow tube extends much deeper, into the left atrium of the heart. Currently, in the European studies, the surgeon goes between ribs to place the tube. This “mini-thoracotomy” is faster and safer than the full sternotomy required for most other implantable pumps, but heart-lung bypass is still required.

1 comment. Share your thoughts »

Credit: CircuLite

Tagged: Biomedicine, implantable device, heart pump

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »