Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at the University of Illinois in Urbana Champaign have developed a simple process to grow upright copper nanowires on different surfaces. The nanowire arrays could find use in field-emission displays, a new type of display technology that promises to provide brighter, more vivid pictures than existing flat-panel displays. In such an application, the nanowires would be used to fire electrons at phosphor particles on a screen, lighting them up.

The new manufacturing method, developed by Kyekyoon Kim and Hyungsoo Choi, leads to copper nanowires between 70 nanometers and 250 nanometers wide. The researchers can use the process to grow the nanowires on various surfaces, including silicon, glass, metal, and plastic. They describe the nanowire array and demonstrate a prototype field-emission display in an online Advanced Materials paper.

Vertical arrays of metal nanowire hold promise for making chemical and biological sensors in addition to electron emitters in field-emission displays (FEDs). But the difficulty of growing well-defined arrays has kept these technologies at bay, says Yugang Sun, a scientist at Argonne National Laboratory’s Center for Nanoscale Materials. Controlling the vertical growth of nanowires typically involves growing them in a template made from another material. Fabricating and then washing away the template is time-consuming. Moreover, many of these methods involve transferring the nanowires to the desired surface.

The new method does not require a template. The researchers use a common synthesis method called chemical vapor deposition. They expose the substrate to vapors of a specially made copper-containing compound at 200 to 300 degrees Celsius. The resulting copper nanowires that grow on the substrate are five-sided with a sharp pentagonal tip. “The challenge is to design and synthesize a precursor and proper conditions under which nice wires will grow,” Kim says.

The copper nanowires are suitable for use in FEDs because they are uniform and have a very pointed tip. “The smaller the tip size the stronger the electric field,” Kim says. “That is why even with a very small voltage…they will become very efficient electron emitters.” The nanowires emit electrons at low voltages of 100 Volt, unlike the tungsten filament used in conventional, bulky cathode-ray-tube televisions (CRTs), which require many kilovolts.

Field-emission displays promise to be less power-hungry than plasma screens and liquid crystal displays, while keeping a CRTs brightness and sharpness. They work on a similar principle as CRTs, but are only a few millimeters thick. Instead of using a single electron gun, they use millions of tiny electron emitters to shoot electrons at red, green and blue phosphors coated on a screen.

0 comments about this story. Start the discussion »

Credit: Kyekyoon Kim and Hyungsoo Choi, UIUC

Tagged: Computing, Materials, nanotechnology, displays, electronics, nanowire

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me