Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Boeing says that its 787 Dreamliner–a midsize, fuel-efficient passenger jet that is currently in development–will be the first commercial aircraft in which major structural elements are made of composite materials rather than aluminum alloys. The changes are expected to slash component weights 20 percent, significantly boosting fuel efficiency.

Such composite materials–layers of superstrong carbon fibers and epoxy–have long been used in military jets, where money is rarely an object, and in commercial jets for parts like luggage-rack frames. But Boeing is learning how hard composites can be to analyze effectively and build economically for commercial jet structures. The company has had to delay the 787’s introduction because elements of the composite-made wing box–the major structure inside each wing–buckled in stress tests.

The wing box begins in roughly the middle of the plane and extends about two-thirds of the wingspan. This key component–more than 15 meters long and 5 meters wide–was designed and built by Boeing together with Mitsubishi Heavy Industries and Fuji Heavy Industries, in Japan. Pat Shanahan, vice president for the 787 program, said in a conference call last week that structural testing had “identified the need to stiffen elements within the center wing box.”

The fix requires adding new brackets and other parts to wing boxes already built, as well as modifying the design of boxes not yet built. The retrofits of existing boxes will intrude into wiring pathways, compounding the problems. So Boeing is pushing back the 787’s delivery date about six months, from the first quarter to the third quarter of 2009.

The issue with composites isn’t that they aren’t strong; it’s that they are so internally complex. They consist of layers oriented in different directions; those layers, in turn, are made of individual fibers that may vary somewhat in composition. This makes it difficult for engineers to accurately mimic their performance in computer models for premanufacture testing.

“Composite materials are more difficult to analyze than simple homogenous metals,” says John Hansman, director of the International Center for Air Transportation, at MIT. “You generally don’t model every fiber in the structure, so you come up with models that have simplifications.”

7 comments. Share your thoughts »

Credit: Boeing

Tagged: Computing, Boeing, aeronautics, composite materials, 787

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me