Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The promise of quantum computers is tantalizingly great: near-instantaneous problem solving, and perfectly secure data transmission. For the most part, however, small-scale demonstrations of quantum computation remain isolated in labs throughout the world. Now, Prem Kumar, a professor of electrical engineering and computer science at Northwestern University, has taken a step toward making quantum computing more practical. Kumar and his team have shown that they can build a quantum logic gate–a fundamental component of a quantum computer–within an optical fiber. The gate could be part of a circuit that relays information securely, over hundreds of kilometers of fiber, from one quantum computer to another. It could also be used on its own to find solutions to complicated mathematical problems.

A logic gate is a device that receives an input, performs a logic operation on it, and produces an output. The type of gate that Kumar created, called a controlled NOT gate, has a classical-computing analogue that flips a bit registering a “1” to “0,” and vice versa. Quantum logic gates like Kumar’s have been built before, but they worked with laser beams that passed through the air, not through fiber. The new gate lays the foundation for experiments that demonstrate the abilities of quantum computers in fiber, says Kumar. “The exciting thing here is that an application is within reach,” he says. Within the next year, Kumar and his team plan to test the gate in a specific application: conducting a complex auction over a secure quantum network.

Researchers at IBM, MIT, and many other corporations and universities have been working on quantum computers since they were first proposed in the 1980s. A quantum computer is a device that processes bits of information by exploiting the weird quantum-mechanical properties of particles such as electrons and photons. A quantum computer is theoretically able to process exponentially more information than classical computers can. The unit of information in a classical computer is the bit, which represents either a “1” or a “0”; but in a quantum computer, it’s the qubit, which can represent both a “1” and a “0” at the same time. Since qubits compute with multiple values at once, the processing power of a quantum computer doubles with each additional qubit. This characteristic would enable a quantum computer with only a couple hundred qubits to significantly outperform today’s best supercomputers.

Kumar’s group makes qubits out of photons that are “entangled.” That means that their physical characteristics, such as polarization, are linked in such a way that if one photon assumes a particular physical state, the matching photon instantly assumes a corresponding state. A few years ago, Kumar demonstrated that optical fiber itself could cause photons to become entangled, and that they would remain entangled over a distance of 100 kilometers. His recent work, described in Physical Review Letters, goes one step further, creating a logic gate that entangles photon pairs.

11 comments. Share your thoughts »

Credit: Prem Kumar

Tagged: Computing, photonics, quantum computing, fiber optics, telecommunication, quantum information

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me