Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Even though the basis of the Fourier domain OCT was conceived more than four years ago, the technological advances that make it practical are comparatively recent. Fourier domain OCT requires three important pieces of equipment: the scanning laser, the processing electronics, and the light detectors. “It’s really in the last 24 months that all of this [technology] started to become available so you could look at it as a system,” says Chris Peterson, vice president of research and development at LightLab.

An initial application for this technology will be to image stents after insertion to ensure they haven’t shifted. A stent is an artificial buttress placed in an artery to keep it open, allowing the blood to flow freely. Research from Harvard University Medical School has shown that stent prolapsing can occur with shifts of less than 100 microns, a level that would go undetected by IVUS. The increased accuracy of OCT technology allows doctors to observe how well the stent is adhering to the arterial walls and to track small amounts of endothelial regrowth that would go unnoticed by IVUS. It could also be used postoperatively to check healing. The resolution of this scan is fine enough to allow doctors to identify small but significant plaque deposits that existing technology might overlook. The technology could also be used to carefully target biopsies, as cancerous cells could be identified in much smaller quantities than currently possible.

LightLab is not the only company trying to improve heart-imaging technology. CardioSpectra of Austin, TX, is working in a similar vein with Fourier domain OCT. The company was recently purchased by Volcano, one of the leading manufacturers of IVUS products. This $25 million acquisition would seem to suggest a strong future for the technology.

Thomas Milner attests that work continues to expand the range of the device into other regions of medicine. “In the world of research, it’s being explored in a number of areas; the [gastrointestinal] track, the bladder, and refinements to OCT technology are also being investigated.”

This technology will be coming into use “in the very near future…by the end of 2009 at the latest,” says Craig Kelley, director of marketing for LightLabs.

1 comment. Share your thoughts »

Credit: LightLab Imaging/Helios Heart Center

Tagged: Biomedicine, imaging, heart, stents

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me