Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

But Brown and others argue that devices like this give only a rudimentary measure of what’s happening in the brain. “If it’s slow, we think it’s okay to operate; if it’s fast, we think they’re waking up,” says Brown. “That’s all we’re doing.”

Brown and his colleagues are using newly developed technology that allows them to study EEG waves while a patient is simultaneously having his brain imaged with functional magnetic brain imaging, an indirect measure of brain activity that is more spatially precise than EEG. Preliminary results show that some brain areas actually become more active during the course of anesthesia. It’s not surprising that a broad-acting drug, which inactivates brain areas that are normally involved in selectively inhibiting brain activity, leads other areas become more active, says Brown. “This is the type of information we really need,” he says.

In corresponding experiments conducted on rodents, scientists used arrays of electrodes to directly measure activity in different parts of the brain. Researchers directed by Matt Wilson, a professor of brain and cognitive sciences MIT who collaborates with Brown, found that rodents that had been given an increasing dose of an anesthetic showed characteristic changes in the rhythm of brain activity in the cortex. But activity in the hippocampus, a brain area crucial in learning and memory, remained unchanged.

“If the signature [measured via EEG] is coming from the cortex, it’s not telling us what the deeper brain structures are doing, such as the arousal system, the brain stem, the amygdala, and the hippocampus,” says Brown. “If EEG cannot tell you about those structures, it’s not telling you about key systems.”

0 comments about this story. Start the discussion »

Credit: Emery Brown.

Tagged: Biomedicine, EEG, fMRI, hippocampus, anesthesia

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me