Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A large-scale study published in the New England Journal of Medicine has sparked a flurry of controversy among anesthesiologists. According to the findings, a commonly used device designed to prevent anesthesia awareness–the rare event when a patient is actually conscious during surgery–was largely ineffective.

The findings highlight just how little is known about the neural changes that underlie anesthesia. “The challenge is that we don’t understand the physiology and pharmacology underlying memory blocking by anesthetics,” says Beverly Orser, an anesthesiologist and scientist at the University of Toronto, who wrote an editorial accompanying the piece. “If we understood the circuits and brain regions involved in complex memory formation, we’d be in a better position to develop these monitors.”

Emery Brown, an anesthesiologist and neuroscientist at Massachusetts General Hospital, aims to do just that. Brown and his colleagues are using both brain imaging of human volunteers and, in animals, electrophysiology approaches–which more directly measure brain activity–to gain a deeper understanding of anesthesia. Preliminary research from his lab suggests that measuring activity at the surface of the brain may not be a reliable indicator of what’s going on deeper down, where the memory circuitry may still be functioning–and forming frightening recollections of a particular surgery.

Every year, more than 20 million people in North America undergo general anesthesia–a combination of drugs that sedate patients, paralyze their muscles, and block perception of pain. The cocktail is carefully titered to each individual and each surgery, with the aim of maintaining the patient’s crucial functions, such as heart rate and blood pressure, while keeping her blissfully unaware of the procedure.

A small number of those who get general anesthesia–about 0.1 to 0.2 percent–will experience awareness, which ranges from relatively innocuous incidents, such as later remembering a conversation between surgeons and nurses, to reports of excruciating pain while completely paralyzed. While it’s not exactly clear what triggers anesthesia awareness, an insufficient amount of drugs that quiet brain areas involved in learning and memory is thought to be part of the problem.

As recognition of the problem of anesthesia awareness has grown in recent years, so has the market for devices designed to prevent it. Several types of monitors are now commercially available. They are based on a simple concept: that anesthesia drugs quiet the cortex in a predictable manner that can be measured with electroencephalography (EEG), a technology that measures electrical activity on the surface of the head. The frequency of brain waves spikes briefly as the patient is lulled into unconsciousness, and then it slows. The devices convert EEG patterns into a single number that indicates a patient’s level of awareness, allowing physicians to administer more drugs if needed.

0 comments about this story. Start the discussion »

Credit: Emery Brown.

Tagged: Biomedicine, EEG, fMRI, hippocampus, anesthesia

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me