Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Stem-cell therapies are often touted as the future of tissue engineering and regenerative medicine. But one of the challenges to developing such therapies is creating an environment in which stem cells can grow. An additional hurdle involves designing a vehicle to deliver stem cells to their target, without being detected by the body’s immune system. Now scientists at Northwestern University have engineered a “miniature laboratory” in the form of a tiny, gel-like sac. They successfully grew stem cells within the sac, delivering proteins and nutrients to the cells through the sac’s membrane. Researchers say that the sac may act as a delivery system for stem cells and other drugs, shielding them until they reach their target. Samuel Stupp, lead researcher and board of trustees professor of materials science and engineering, chemistry, and medicine at Northwestern, says that the discovery may have promising applications in cell therapy and regenerative medicine.

“You could transplant these sacs inside a patient,” says Stupp. “And in the sac, the cells would be protected, until they get more established in an organ or tissue. Then the sac should be able to biodegrade.”

The team developed the sac after months of mixing various molecular solutions together.

“When we would mix solutions, we would sometimes get a cloudy solution or precipitates, but nothing we thought was interesting,” says Stupp. “And one good day, my postdoc walked into my office with a sac, and I knew we had something good. And then we spent more than a year trying to understand what happened.”

Researchers developed the sac from a combination of two molecules: a peptide amphophile (PA), a synthetic molecule that Stupp’s lab developed seven years ago, and hyaluronic acid (HA), a molecule found in joints and cartilage. The team first poured the PA solution in a large vial, then added the HA solution. Almost instantly, the two liquids began to solidify at the point of contact.

As Stupp looked at the interaction more closely, he found that the lighter PA molecules surrounded the HA molecules, sealing them in to create a single pouch, or sac. Interestingly, the sac continued to grow even after its formation, expanding and creating a thicker membrane the longer it remained in solution. Researchers stopped its growth by simply removing the sac from the vial with a pair of tweezers.

But why exactly do these molecules interact so strongly? Stupp explains that the PA molecules are particularly primed to form solid structures. In liquid solution, PA molecules hold a uniform positive charge, essentially repelling each other and remaining in liquid form. However, as soon as it comes in contact with a negatively charged solution such as HA, the PA molecules do not repel as much, and they automatically begin to form nanoscale fibers.

“This is a very potent reaction,” says Stupp. “These molecules want to crystallize, and when they see hyaluronic acid, they weave a fabric of fibers in the plane of contact between the liquids.”

0 comments about this story. Start the discussion »

Credit: Science magazine

Tagged: Biomedicine, stem cells, drugs, disease

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me