Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

While the drug was able to lower cholesterol levels overall, it did not discriminate between good (HDL) and bad (LDL) cholesterol. McCullagh says that targeting microRNA in order to lower cholesterol may not be the best approach, since there are a number of drugs already on the market that specifically reduce bad cholesterol. However, the study’s main objective was not to develop a cholesterol-lowering drug, but to test the drug’s safety and stability in primates. In these regards, McCullagh says, the drug effectively passed the test.

“From this study, we know once you block 122, the duplex is stable, and 122 stays blocked until it’s metabolized by the cell and removed,” says McCullagh. “The liver also seems to be slow in making more 122, so for both those reasons, we know the effect is relatively long lived.”

Such an effect may be key to combating other diseases related to microRNA, such as hepatitis C. McCullagh’s team has already found that blocking microRNA-122 in culture reduces replication of the virus in human cells.

“It’s interesting that after three doses for five days [in monkeys], we’re getting a long-lasting effect,” says McCullagh. “You might have to give such a drug once a month, but no more than once a week, so you might have weekly treatment for hepatitis C.”

Santaris Pharma plans to start human trials of the drug in the next few months, and it eventually hopes to test the drug on patients with hepatitis C and other related disorders.

Tyler Jacks, director of the Center for Cancer Research at MIT, studies the role of microRNAs in cancers and other disorders. He says that while the Santaris Pharma drug may be effective in treating conditions in the liver, it may not have the same effect on other organs that do not take up the drug as easily.

“For many disease applications, it will be necessary to get efficient delivery to other tissues and organs,” says Jacks. “Still, the data are impressive, and I would be very encouraged about future prospects.”

0 comments about this story. Start the discussion »

Credit: Santaris Pharma

Tagged: Biomedicine, genetics, disease

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me