Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A biopharmaceutical company in Denmark has designed a drug that blocks a specific microRNA strand involved in replicating hepatitis C, as well as in regulating cholesterol. The company, Santaris Pharma, is the first in the world to successfully test the technique in monkeys.

Researchers have recently found that microRNA plays a key part in regulating genetic transcription. MicroRNA are tiny segments of RNA, and while they do not produce proteins like RNA and DNA, they have the ability to bind with messenger RNA, the deliverer of the genetic “instructions” that are required for protein synthesis. Scientists have found that when microRNA block certain messenger RNA, they also prevent genetic orders from being carried out. If these orders are meant to protect the body from disease, preventing their delivery via microRNA may result in a host of disorders, including cancer, cardiovascular and neuro-related disorders, and viruses such as hepatitis C.

“MicroRNAs appear very involved in the pathogenesis of serious diseases,” says Keith McCullagh, Santaris Pharma’s CEO. “This technology might be used to inhibit a whole range of microRNA, and it might [lead to] a new class of drugs in the pharmaceutical industry.”

For the past few years, multiple research groups have looked for ways to block specific microRNAs. Researchers have had difficulty developing a compound stable enough to bind with microRNA for a long period of time. McCullagh and his colleagues have cleared this hurdle. Using a chemistry technique called locked nucleic acid (LNA), the researchers can generate a three-dimensional compound that successfully locks onto microRNA, forming a duplex that cannot bind with other molecules, such as messenger RNA.

The team tested the compound on microRNA-122, which is involved in the viral replication of hepatitis C and in regulating cholesterol levels. MicroRNA-122 is present in large quantities in the liver, an organ that, McCullagh’s team found, easily takes up the LNA compound. The group developed an aqueous solution containing the compound, and it ran the drug through a number of tests, first in culture dishes, then in primates.

The researchers first injected the compound into a culture dish with human liver cells infected with hepatitis C, and they found that the drug successfully bound up microRNA-122, reducing viral replication in culture. The team then moved on to animal studies and injected the drug three times intravenously, at varying doses, in African green monkeys. The group with the highest dose experienced a 30 to 40 percent drop in cholesterol levels, which lasted about three months. The scientists performed liver biopsies before and after treatment, and they found that the LNA compound effectively bound up microRNA-122 in the liver.

0 comments about this story. Start the discussion »

Credit: Santaris Pharma

Tagged: Biomedicine, genetics, disease

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me