Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

“I don’t like the idea that, if it’s video traffic, Comcast might target it differently than they might target a software download,” Klinker says. “But this mechanism could be implemented by any application.” In order for such a system to work, however, “we absolutely have to have a guarantee from the network that if there is capacity, they will allow this traffic to use as much of it as is available,” Klinker says. “And I think there’s a degree of mistrust at the moment where I’m not sure we would believe the operators.”

Chiang believes that the mistrust between network operators and content managers has forced the industry into a false choice. Net neutrality seems to be the only alternative to anticompetitive collusion, in which network operators give preferential treatment to their own content or that of their partners. Chiang, however, thinks that there’s a middle ground, and that one of the obstacles to reaching it has been the inability to accurately quantify the costs and benefits of different types of information sharing between network operators and content distributors. Later this month, at the Institute of Electrical and Electronics Engineers’ annual Conference on Information Sciences and Systems, Chiang will outline a mathematical framework for performing just such a cost-benefit analysis. “There is a notion of capacity for a pipe” such as Comcast’s network, Chiang says, “and there is also the notion of capacity for content distribution,” through peer-to-peer networks and other, similar channels. But, Chiang adds, “there hasn’t been a notion of capacity for this joint interaction.”

Chiang says that he and his colleagues have already applied their model to the “special case” of peer-to-peer video streaming. “In this special case, we have recently obtained the exact answer–what capacity is, and how to construct a peer selection algorithm to reach arbitrarily close to that value.” The researchers have also developed a second model that depicts the economic interactions between all the parties involved in Internet content distribution–not just network operators and the developers of peer-to-peer programs, but also content creators (like movie studios), network equipment vendors, end users, and the like.

Chiang acknowledges that his work is just the first step in a process that will be a long time unfolding. “Finding the network capacity,” he says, “will take many years of hard work by computer scientists and mathematicians.” But with the explosion in the popularity of bandwidth-hogging Internet video, the prevalence of peer-to-peer networks, and the increasing frequency with which people buy Internet and television service from the same vendors, any clarification of the complex dynamics of Internet content distribution is welcome.

4 comments. Share your thoughts »

Credit: Phil Farnsworth, Harvard Law School

Tagged: Business, FCC, Comcast

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me