Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Scientists at Case Western University have made a biopolymer that switches rapidly between rigid and flexible states, using material inspired by sea cucumbers. The new material softens in the presence of a water-based solvent, and it stiffens back up as the solvent evaporates. Christoph Weder, lead researcher and professor of macromolecular science and engineering, says that such a material may be useful in the design of implantable electrodes able to record brain activity over long stretches of time, with minimal scarring compared with conventional electrodes.

One of the challenges facing researchers developing neural implants to help paralyzed patients is that the electrodes are typically made of metal. Such brittle and stiff material can cause tissue damage over time. (See “Stretchable Electronic Skin.”) Indeed, over a couple of months, the electrode’s hard exterior rubs against soft brain matter, causing scar tissue to form and significantly decreasing the electrode’s recording ability. “We need a new generation of electrodes that are different than the usual metal electrodes that produce all sorts of damage after a while and don’t work anymore,” says MIT Institute Professor Emilio Bizzi, who was not involved in the study.

To overcome this problem, Weder and his colleagues looked for biocompatible materials that could transform from rigid to flexible states, and they found an ideal model in the sea cucumber. As a sea cucumber maneuvers its way across the ocean floor, its pliable structure makes it easy to worm through cracks and crevices. At the first sign of danger, its skin stiffens, forming a rigid armor against likely predators. Researchers have found that the sea cucumber’s skin is composed of an ultrafine network of cellulose fibers, or “whiskers.” In defensive mode, surrounding cells release molecules that cause the whiskers to bind together, forming a rigid shield. In a relaxed state, other cells release plasticizing proteins, loosening fibers and making the skin pliable.

Weder’s team isolated stiff cellulose fibers from the mantles of tunicates, sea creatures with skin similar to that of sea cucumbers. The researchers then combined the fibers with a rubbery polymer mixture. The fibers formed a uniform matrix throughout, reinforcing the softer polymer material. These intersecting points hold the network together, creating an inflexible material. “It’s like a three-dimensional web in which these nanofibers overlap at certain points, and wherever they overlap, they stick to each other,” says Weder.

He says that cellulose fibers are particularly good at binding with each other because they contain many hydroxyl groups on their surface. In the absence of any other hydrogen-containing molecule, these hydroxyl groups stick together, forming a fibrous web. In order to break the fiber bonds and loosen the web, Weder’s team injected a water-based solvent into the material that contained competitive hydrogen groups. In response, cellulose fibers decoupled as their hydrogen groups combined with the water solution. Alternately, as water evaporated from the mixture, fibers reconnected, becoming stiff again.

3 comments. Share your thoughts »

Credit: F. Carpenter

Tagged: Biomedicine, Materials, electrodes, biology

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me