Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers have found a quick and simple way to make arrays of high-performance electronic devices from organic semiconductor material. The development, led by researchers at the National Institute of Standards and Technology (NIST), in Gaithersburg, MD, could lead to a simple, low-cost method to manufacture large, flexible electronic circuits that use organic semiconductors.

The researchers coax organic semiconductor molecules to self-assemble around chemically pretreated electrodes to form field-effect transistors, which are often used to switch pixels on and off in displays. The technique results in an array of transistors that have good electrical properties and are insulated from one another. The researchers demonstrated the process using flexible substrates, which could be useful for commercial applications, says David Gundlach, the NIST researcher who led the work.*

Current flat-panel displays, such as liquid crystal displays, are rigid because they use amorphous silicon to make the transistors that control the pixels. Organic electronic circuits could pave the way for roll-up displays: foldable electronic readers, large screens that can be rolled up and tucked into cell phones, and smart bandages that monitor wounds and sense the need for drugs. However, a practical method to cheaply produce high-performance organic electronic circuits has proved elusive.

The new technique, presented in Nature Materials, could be faster, and hence cheaper, than current methods to make flexible circuits. There are several existing ways to make organic circuits over large areas. One is a lithographic technique similar to those used to make conventional silicon chips; this involves coating the entire circuit’s surface with the organic semiconductor and then etching it away wherever it is not needed. A more efficient method is inkjet printing, in which nozzles put down liquid droplets of plastic semiconductors in a desired pattern. In fact, two companies that have announced plans to commercially manufacture plastic electronics use these two different methods. (See “Plastic Electronics Head for Market.”)

The new method eliminates the need to pattern the semiconductor layer. Once the researchers have patterned the source and drain electrodes using lithography, they dip the circuit in a special chemical to treat the electrode surface. Then they coat the circuit with a thin layer of an organic semiconductor solution.

* The original version of this article contained an error. It incorrectly stated that the researchers had not demonstrated the technique on a flexible substrate.

1 comment. Share your thoughts »

Credit: NIST

Tagged: Computing, Materials, nanotechnology, materials, transistors

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »