Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

To track their blood sugar levels, patients with diabetes typically prick their fingers at least three times a day and feed blood samples into glucometers. It’s a tedious and sometimes painful process, and a patient will often need to run a second test due to “insufficient blood” in the first sample. Now, researchers at Baylor University, in Waco, TX, have engineered a thumb-pad sensor that measures glucose levels via electromagnetic waves–no finger pricking required.

“There are many patients that don’t monitor because of the pain of monitoring,” says John Buse, president of the American Diabetes Association. “So there’s certainly the potential to improve the lives of people with diabetes.”

According to Randall Jean, associate professor of electrical and computer engineering at Baylor, the prototype of the new device matches the performance of conventional glucometers.

“It is accurate enough for people to make decisions about whether or not to inject insulin,” says Jean. “That’s really the target. It’s not to measure glucose within one ppb [part per billion] but to produce an instrument that patients can use to make decisions about externally controlling blood sugar.”

The U.S. Food and Drug Administration has approved only one noninvasive glucose monitor, called the GlucoWatch Biographer. Designed by Cygnus, of Redwood City, CA, the device is a wristwatch that uses an electric current to pull small amounts of fluid through the skin without pricking it. A sensor analyzes the fluid for glucose. However, 50 percent of patients who used the watch experienced skin irritation and sores, and the product was discontinued in 2007.

Jean says that the sensor he and his colleagues are developing will be “truly noninvasive” and will not require that any fluid–blood or otherwise–pass through the skin. The sensor itself is a small, spiral-shaped microwave circuit, which acts as a transmission line and emits electromagnetic waves. When a person places her thumb on the spiral, the electrical properties of her thumb change how energy passes through the circuit. Jean and his colleagues measure this change, and in early trials, they seem to have found patterns that correspond to variations in glucose levels.

“The energy does not specifically respond to glucose; it responds to the aggregate effect of blood, muscle, fat, skin, and glucose,” says Jean. “What we’re hoping is that over a broad enough frequency range, the individual components have unique signatures that allow us to extract the glucose.”

The sensor is still in the early stages of development, and Jean has so far tested the prototype on five volunteers in 15 separate trials. The researchers made plastic molds of each subject’s thumb, and they fabricated plastic guides to ensure that the subjects placed their thumbs on the sensors in exactly the right position. Jean also added a pressure gauge to tell the subjects how hard to press down in order to get a successful read. In each trial, volunteers placed their thumbs on the sensors, and researchers took 10 separate readings. Subjects also performed finger-prick tests, drawing blood and using traditional glucometers.

2 comments. Share your thoughts »

Credit: Randall Jean/Baylor University

Tagged: Biomedicine, sensor, disease

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me