Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at Monash University, in Victoria, Australia, have found a way to coat fibers with titanium dioxide nanocrystals, which break down food and dirt in sunlight. The researchers, led by organic chemist and nanomaterials researcher Walid Daoud, have made natural fibers such as wool, silk, and hemp that will automatically remove food, grime, and even red-wine stains when exposed to sunlight.

Daoud and his colleagues coat the fibers with a thin, invisible layer of titanium dioxide nanoparticles. Titanium dioxide, which is used in sunscreens, toothpaste, and paint, is a strong photocatalyst: in the presence of ultraviolet light and water vapor, it forms hydroxyl radicals, which oxidize, or decompose, organic matter. However, says Daoud, “these nanocrystals cannot decompose wool and are harmless to skin.” Moreover, the coating does not change the look and feel of the fabric.

“When you burn something, you oxidize it,” says Jeffrey Youngblood, a materials engineering professor at Purdue University, who is developing self-cleaning materials that repel oil. “This [titanium dioxide coating] is just burning organic matter at room temperature in the presence of light.”

Titanium dioxide can also destroy pathogens such as bacteria in the presence of sunlight by breaking down the cell walls of the microorganisms. This should make self-cleaning fabrics especially useful in hospitals and other medical settings. Daoud says that “self-cleaning property will become a standard feature of future textiles and other commonly used materials to maintain hygiene and prevent the spreading of pathogenic infection, particularly since pathogenic microorganisms can survive on textile surfaces for up to three months.”

The idea of using titanium dioxide to make self-cleaning surfaces is not new. Titanium dioxide powder is added to paints and as a transparent coating (roughly 10 nanometers thick) on glass to make self-cleaning windows.

To make self-cleaning wool, Daoud and his colleagues use nanocrystals of titanium dioxide that are four to five nanometers in size. In the past, the researchers have made self-cleaning cotton by coating it with these nanocrystals. But coating wool, silk, and hemp has proved more difficult. These fibers are made of a protein called keratin, which does not have any reactive chemical groups on its surface to bind with titanium dioxide.

The researchers chemically modify the surface of wool fibers, adding chemical groups called carboxylic groups, which strongly attract titanium dioxide. Then they dip the fibers in a titanium dioxide nanocrystal solution. The researchers have outlined this process in a paper that recently appeared online in the journal Chemistry of Materials.

In the paper, the researchers show how the material stands up to red-wine stains, which are notoriously difficult to remove. Titanium-dioxide-coated wool shows almost no sign of the red stain after 20 hours of exposure to simulated sunlight, while the untreated wool remains boldly stained. Other stains disappear faster: coffee stains fade away in two hours, while blue-ink stains disappear in seventeen hours.

4 comments. Share your thoughts »

Credit: American Chemical Society

Tagged: Business, Communications, nanotechnology, materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me