Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Bioengineers have developed an implantable device that captures very pure samples of stem cells circulating in the blood. The device, a length of plastic tubing coated with proteins, could lead to better bone-marrow transplants and stem-cell therapies, and it also shows promise as a way to capture and reprogram cancer cells roaming the bloodstream. The company CellTraffix is commercializing the technology.

When patients get bone-marrow transplants, what they’re really receiving are infusions of a type of adult stem cell. Bone-marrow-derived stem cells play a crucial role in renewing the blood throughout adulthood, creating new cells to carry oxygen and fight infections. These adult stem cells can be sampled using the new device.

The new device mimics a small blood vessel: it’s a plastic tube a few hundred micrometers in diameter that’s coated with proteins called selectins. The purpose of selectins in the body seems to be to slow down a few types of cells so that they can receive other chemical signals. A white blood cell, for instance, might be instructed to leave the circulation and enter a wound, where it would protect against infection. “Selectins cause [some] cells to stick and slow down,” says Michael King, a chemical engineer at the University of Rochester who’s developing the cell-capture devices. Different types of selectins associate with different kinds of cells, including platelets, bone-marrow-derived stem cells, and immune cells such as white cells.

In an upcoming publication in the British Journal of Hematology, King reports that selectin-coated microtubes implanted in rats can capture very pure samples of active stem cells from circulating blood. He gave a similar demonstration of stem-cell purification with samples taken from human bone marrow last year. Cancer patients often require bone-marrow transplants following harsh chemotherapy and radiation treatments that kill adult stem cells in the blood.

The purity of these transplants can be a matter of life or death. When the transplant is derived from the patient’s own bone marrow–extracted before treatment–it’s critical that it not contain any cancer cells. When it comes from another person, there’s a chance that the donor’s immune cells will attack the recipient if they’re not filtered out. But current purification methods are slow and inefficient, King says. Those that rely on antibody recognition or cell size and shape typically extract only a small fraction of the stem cells in a blood sample; the rest go to waste.

Twenty-eight percent of the cells captured by King’s implants were stem cells. “This is astounding given how rare they are in the bloodstream,” says King. Implants would probably not be able to capture enough stem cells for transplant. But King believes that filtering a donor’s blood through a long stretch of selectin-coated tubing outside the body, in a process similar to dialysis, would be very efficient. “This technique will clearly be useful outside the body” as a means of purifying bone-marrow-derived stem cells, says Daniel Hammer, chair of bioengineering at the University of Pennsylvania.

Hammer believes that King’s devices will also have broader applications as implants that serve to mobilize a person’s own stem cells to regenerate damaged tissues. By slowing down cells with selectins and then exposing them to other kinds of signals, says Hammer, King’s devices “could capture stem cells, concentrate them, and differentiate them, without ever having to take the cells out of the body.” There might be a way to use selectins to extract neural stem cells, too.

3 comments. Share your thoughts »

Credit: Richard Baker, University of Rochester

Tagged: Biomedicine, stem cells, implant

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me