Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Xenith, a startup company based in Lowell, MA, has developed a new football helmet to better protect athletes from concussions. The helmet is lined with a thermoplastic material that can adapt to the force of impact. On a routine hit to the head, the discs cushion the head, while following a harder, more forceful blow, the material remains stiff and prevents the sudden jarring of the head that causes concussions.

“The idea is that we have something that is more intelligent and responds uniquely to what is happening to it,” says Vincent Ferrara, the founder and CEO of Xenith. Testing has also shown that the discs can withstand hundreds of impacts without notable degradation in performance. The Xenith helmet will be available this spring for approximately $350, which is considerably more expensive than helmets already on the market.

The protective material in football helmets has evolved over time from traditional foam padding to gel-filled and inflatable padding. But Joseph Maroon, a neurosurgeon at the University of Pittsburgh Sports Medicine Center, says that none of the designs for football helmets are ideal, and concussions remain a common problem in the sport. “It is estimated that 10 to 25 percent of football players in the United States sustain a concussion each year, and the effects can be catastrophic,” says Maroon, the team physician for the NFL’s Pittsburgh Steelers. “There is a need for a new type of helmet technology.”

To address this need, Xenith has embedded 18 shock absorbers into a flexible cap that lines the inside of a helmet. The shock absorbers are made out of a plastic that is elastic and flexible, thus it can accept a wide range of forces and return to its original shape instantaneously. The shock absorbers are hollow discs featuring a tiny hole to allow air to flow in and out. Upon impact, the walls of the discs collapse to absorb and dissipate the energy.

“When you force air or any fluid to flow through a small hole, you get an adaptive response: the harder [the disc] is hit, the stiffer it behaves, because you are generating more resistance inside the disc,” says Ferrara. “You want a system to behave softly under low energy, but under high energy, you want it to get progressively stiffer so that it does not collapse down to nothing.”

The inside lining of the Xenith helmet shown here is a flexible cap embedded with shock absorbers, or black discs, intended to dissipate the energy of a hit and lessen the sudden movement of the head that causes concussions.
Credit: Xenith

13 comments. Share your thoughts »

Credit: Xenith

Tagged: Computing, Biomedicine, materials, sports

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me