Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers are developing a high-resolution tracking system that uses PDAs and audio directions to guide patients around hospital wards. The system also helps rehabilitate those with traumatic brain injuries. The system, which is made by Boston startup Talking Lights, uses light fixtures as beacons to send information to a PDA via an optical receiver. The PDA is also loaded with mapping software, information about the building, and user-specific data such as appointment schedules.

Traumatic brain injuries, which might result from car accidents or the detonation of an improvised explosive device, among other possible causes, can lead to cognitive problems that include trouble with abstract thinking, memory, and spatial orientation. The Talking Lights guidance system is “a tremendous asset for someone with traumatic brain injury,” says Heechin Chae, medical director of the brain injury center at Spaulding Rehabilitation Hospital, in Boston. The system has been tested at the hospital over the past two years and is currently used by about 20 patients. It not only helps patients navigate the rehab center, but it also appears to help them relearn how to process visual cues and navigate unfamiliar environments, Chae says.

Installing the indoor guidance system in a building is a simple and fairly cheap process, says Neil Lupton, president of Talking Lights. The light fixtures don’t need to be replaced. All that needs to be switched out is the ballast, an electrical component that’s normally replaced every few years in all fluorescent lights. The ballast regulates the amount of electricity that goes into the bulb to maintain the light level and keep the bulb from exploding.

Steven Leeb, a professor of electrical engineering and computer science at MIT, designed a ballast that modulates the light coming out of the bulb in a set pattern to give each bulb a unique optical signature. No flickering is visible to the naked eye, but off-the-shelf optical receivers can detect these patterns.

Patients at Spaulding Hospital who are participating in the project wear a vest with an optical receiver sewn on the shoulder. The receiver is connected to a PDA that is stored in the vest’s pocket. A database containing maps for the building is stored on the device, outlining all the lights and their signatures. Software on the PDA rapidly computes the user’s position based on which light she’s nearest to. Then, based on the particular patient’s location and a unique preloaded schedule, the PDA plays recorded directions. A typical sequence, read in a firm voice, goes, “Katie, go to the gym. Go through the double doors.” If the user goes through the wrong double doors, the device provides a correction: “You are going in the wrong direction. Pass the photocopier. Turn to your right.” Information about what’s near each light at each particular location can be put into a global database in about a day’s time, says Daniel Taub, an engineer with Talking Lights.

0 comments about this story. Start the discussion »

Credit: Donna Coveney (top); Neil Lupton, Talking Lights (bottom)

Tagged: Biomedicine, MIT, neuroscience, optics

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me