Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The result is exactly what theory predicts: a crystal lattice in which each particle of one type is surrounded by eight of the others marking the corners of a cube. Mirkin’s group further demonstrated that tweaking the temperature and DNA sequences could nudge the same mix of particles to form a distinct crystal structure in which each particle has 12 neighbors.

Mirkin says that he and his team are just getting started. “To me, it’s really only the start rather than the ending,” he says. Over the past three years, Mirkin’s group has been demonstrating methods to place different DNA linkers on different faces of nonspherical particles, such as triangle-faced prisms and virus particles. That, he says, should enable programming of more complex materials with repeating patterns of three or more components. “The really intriguing possibility here is the ability to program the formation of any structure you want,” says Mirkin.

Stroud says that the structures already produced will be useful as the DNA-programmed assembly is extended to particles other than gold. Applications could include photonic crystals, in which the precise periodicity of particles can tune the overall materials to manipulate specific wavelengths of light, and photovoltaics that capture a broader range of the solar spectrum.

The structures are highly porous–10 percent particles and DNA and 90 percent water. That could hinder applications in which water is undesirable. Drain out the water, and the crystals collapse. Gang says that one could stabilize the crystals by filling the lattice with a polymer, but he is also exploring alternate stabilization schemes that would preserve the lattice’s open space.

1 comment. Share your thoughts »

Credit: Oleg Gang

Tagged: Biomedicine, Materials, DNA, materials, nanoparticles

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me