Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Nanoptek, a startup based in Maynard, MA, has developed a new way to make hydrogen from water using solar energy. The company says that its process is cheap enough to compete with the cheapest approaches used now, which strip hydrogen from natural gas, and it has the further advantage of releasing no carbon dioxide.

Nanoptek, which has been developing the new technology in part with grants from NASA and the Department of Energy (DOE), recently completed its first venture-capital round, raising $4.7 million that it will use to install its first pilot plant. The technology uses titania, a cheap and abundant material, to capture energy from sunlight. The absorbed energy releases electrons, which split water to make hydrogen. Other researchers have used titania to split water in the past, but Nanoptek researchers found a way to modify titania to absorb more sunlight, which makes the process much cheaper and more efficient, says John Guerra, the company’s founder and CEO.

Researchers have known since the 1970s that titania can catalyze reactions that split water. But while titania is a good material because it’s cheap and doesn’t degrade in water, it only absorbs ultraviolet light, which represents a small fraction of the energy in sunlight. Other researchers have tried to increase the amount of sunlight absorbed by pairing titania with dyes or dopants, but dyes aren’t nearly as durable as titania, and dopants haven’t produced efficient systems, says John Turner, who develops hydrogen generation technologies at the National Renewable Energy Laboratory (NREL), in Golden, CO.

Nanoptek’s approach uses insights from the semiconductor industry to make titania absorb more sunlight. Guerra says that chip makers have long known that straining a material so that its atoms are slightly pressed together or pulled apart alters the material’s electronic properties. He found that depositing a coating of titania on dome-like nanostructures caused the atoms to be pulled apart. “When you pull the atoms apart, less energy is required to knock the electrons out of orbit,” he says. “That means you can use light with lower energy–which means visible light” rather than just ultraviolet light.

The strain on the atoms also affects the way that electrons move through the material. Too much strain, and the electrons tend to be reabsorbed by the material before they split water. Guerra says that the company has had to find a balance between absorbing more sunlight and allowing the electrons to move freely out of the material. Nanoptek has also developed cheaper ways to manufacture the nanostructured materials. Initially, the company used DVD manufacturing processes, but it has since moved on to a still-cheaper proprietary process.

Gain the insight you need on energy at EmTech MIT.

Register today

29 comments. Share your thoughts »

Credit: John Guerra, Nanoptek

Tagged: Energy, energy, solar power

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me