Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Swiss researchers have demonstrated the practicality of a new high-resolution x-ray imaging technique that reveals fine structures that are invisible using conventional techniques. Dark-field x-ray imaging can be used to generate highly detailed images of bones and to distinguish between substances that look identical in conventional x-ray images, such as explosives and cheese. The researchers are now investigating whether their approach might also increase the resolution of medical imaging techniques such as mammograms and computed-tomography (CT) scans.

Franz Pfeiffer, assistant professor of physics at Ecole Polytechnique Fédérale de Lausanne, in Switzerland, who developed the new technique, compares conventional x-ray images with shadows. Such images rely on information about how much radiation is absorbed as it passes through a sample, such as a patient’s limb. But more-complex interactions are happening, says Pfeiffer, and the more information that can be gleaned about these interactions, the better the contrast of the images. Dark-field imaging measures how a sample scatters light.

“These guys are showing that you can do things with x-rays that were only thought practical optically [with visible light],” says Richard Lanza, a senior research scientist at MIT’s department of nuclear science and engineering.

Previously, researchers including Pfeiffer had demonstrated dark-field imaging using a large, expensive particle accelerator called a synchrotron as an x-ray source. Synchrotrons provide very bright, finely focused beams of x-rays. Such a powerful source was necessary because the inefficient crystal optics used to focus the x-rays onto the sample could only cope with a narrow spectrum of wavelengths.

To replace the inefficient crystal optics, Pfeiffer developed silicon filters that work with the full spectrum of rays generated by low-power, conventional x-ray tubes. These filters are flat discs of silicon etched with 20-micrometer-long slits, some of which are filled with gold. To generate scattering images, these grates are placed between the x-ray source and the sample, and between the sample and the detector.

“Small structures like micro-cracks show up nicely in these images because they scatter radiation quite a bit,” says Pfeiffer. This suggests that the images could be useful for detecting osteoporosis or for finding flaws in mechanical structures such as turbines.

“Edges and boundaries are more clear in the dark-field images,” says Elizabeth Brainerd, an evolutionary biologist at Brown University, who uses x-rays to study the biomechanics of bones. (See “Catching Evolution on the Run.”) It can be difficult to distinguish small bones and joints in conventional x-rays. Brainerd agrees that dark-field images could be useful for detecting small fractures and bone spurs in patients, and she’s excited about the possibility of extending Pfeiffer’s technique to three-dimensional CT scans.

0 comments about this story. Start the discussion »

Credit: Franz Pfeiffer, EPFL

Tagged: Biomedicine, imaging, x-ray

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me