Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Scientists have found a way to quickly identify which DNA sequences are ideal for detecting a particular odor and turn dried DNA into odor detectors. While many researchers are working on an electronic nose to detect toxins and explosives, this new platform could be used to create a wide array of sensors using existing high-throughput molecular-biology equipment.

“Now what we can do is take a microarray of 20,000 sensors … and pick out those sensors that best respond to the odors of interest,” says lead researcher Joel White of Cogniscent, a company based in North Grafton, MA, that manufactures odor-detection devices.

Compared with man-made sensor technologies developed for vision and hearing, our ability to mimic the chemical senses–smell and taste–is relatively primitive. To detect explosive materials such as TNT, scientists typically design highly specific polymers that fluoresce when they come in contact with their target compounds. But building a more generalized electronic nose platform that could detect a wider range of chemicals hasn’t been possible.

Over the past decade, White and neuroscientist John Kauer of Tufts University have been working to improve their patented electronic nose, a handheld device that contains an array of 16 sensor types made of synthetic polymers. These polymers are cross-reactive, so that several sensor types may change shape in response to a single odor–a design analogous to the human nose. The polymers are dyed with a fluorescent marker, and their activation patterns can be monitored via optical electronic sensors and analyzed by an embedded microprocessor. But after 10 years of hard work, the pair had only been able to incorporate about 50 synthetic polymers–far less than the estimated 1,000 sensors in a human nose, which can respond to some 10,000 different odors.

Several years ago, the duo decided to test DNA–a natural polymer that is ubiquitous in the biological laboratories where the scientists spend most of their time. “When we first started talking about it with people, nobody imagined that dye-labeled DNA dried onto a substrate would respond to odors,” says White.

The scientists began their experiments haphazardly: by scavenging short pieces of single- and double-stranded DNA from neighboring labs at Tufts and looking at their responses to several standard compounds. Their first experiments with dye-labeled double-stranded DNA gave them a hint that the approach could work, but all the sequences they tried responded to odors in the same way.

2 comments. Share your thoughts »

Credit: Cogniscent

Tagged: Biomedicine, DNA, sensor

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me