Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Earlier this month, a stealthy startup that says its ultracapacitor-based energy storage system could make conventional batteries obsolete took a small step toward proving its many skeptics wrong.

The company, EEStor, based in Cedar Park, TX, has made bold claims about its technology but has so far failed to deliver a working commercial product. However, an agreement announced this month with Lockheed Martin, based in Bethesda, MD, suggests that the company could be making progress–at least enough to convince a major defense contractor that the technology has merit. The agreement gives Lockheed an exclusive international license to use EEStor’s power system for military and homeland-security applications–everything from advanced remote sensors and missile systems to mobile power packs and electric vehicles. The technology, Lockheed said in a statement, “could lead to energy independence for the Warfighter.”

Lockheed has not seen a working prototype but said that qualification testing and mass production of EEStor’s system is planned for late 2008. Lockheed would not disclose the terms of the partnership. “We fully intend to work with EEStor this year to prototype and demonstrate this technology for the soldier,” says Lionel Liebman, Lockheed’s manager of program development in its applied research division. “We’re looking at a lot of applications where the EEStor application can help.”

EEStor says that its patented system is a nontoxic, safe, and lower-cost alternative to conventional electrochemical battery technologies, offering ten times the energy density of lead-acid batteries. The company also claims that its system allows rapid and virtually unlimited charging and discharging without significant degradation of the unit. (See “Battery Breakthrough?”) But many experts have been skeptical, citing the difficulty of working with the material at the core of the company’s system: a ceramic made of barium-titanate.

A lack of news from the company has only fed the skepticism. The last public announcement from EEStor came last January, when it revealed that it had made high purity barium-titanate powders on its first automated production line. But the company has so far failed to deliver units of its storage product to minority investor ZENN Motor, a company based in Toronto that plans to use it in electric vehicles. Originally, the devices were to have shipped in the first half of last year.

Gain the insight you need on energy at EmTech MIT.

Register today

37 comments. Share your thoughts »

Credit: Morris County Municipal Utilities Authority

Tagged: Business, energy, batteries

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »