Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Silicon, in the form of photovoltaic cells, is good at generating electricity from sunlight. New research shows that it could also make a good thermoelectric: a material that converts heat into electricity and vice versa. Since silicon is more abundant than the leading thermoelectric materials and has a vast manufacturing infrastructure behind it, it could eventually yield cheap devices for generating power from engines’ waste heat or from solar heat.

In this week’s Nature, University of California, Berkeley, chemistry professor Peidong Yang and his colleagues report having fabricated silicon nanowires that generate electricity when a temperature differential is applied across them. Until now, silicon has been considered a bad thermoelectric material. But according to Yang, “the performance of the nanowires is already comparable to the best existing thermoelectric material.”

Thermoelectric devices have been around since the early 1960s, usually made from either bismuth telluride or lead telluride. They are used mainly for cooling: when a voltage is applied across a thermoelectric material, it gets hotter on one side and cooler on the other. Thermoelectric coolers are popularly used in portable picnic coolers and cooling car seats.

But more exciting applications lie in energy efficiency and energy generation. Thermoelectrics could be used to convert waste heat generated by car engines into electricity. Even more attractive is the idea of thermoelectrics’ harnessing the sun’s heat to create electricity. But bismuth telluride and lead telluride are not efficient enough, so devices made from them are costly as well as bulky, because they require more material.

Thermoelectrics would have to be at least twice as efficient as they now are to be used for cheap power generation, says Mildred Dresselhaus, a thermoelectrics pioneer and physics and electrical-engineering professor at MIT. Using nanoscale structures instead of bulk crystals of the materials can increase their efficiency, she says. Nanostructures block the flow of heat but allow electrons to flow easily. But processing and nanostructuring bismuth telluride is not easy.

Silicon, on the other hand, “is much easier to process, has a big processing infrastructure behind it,” Yang says. “Silicon also has a much lower cost than bismuth telluride.” The problem with silicon is that it is a bad thermoelectric. A good thermoelectric needs to be two things: a good electrical conductor and a bad heat conductor. Silicon conducts both heat and electricity very well.

Yang and his colleagues reduced silicon’s thermal conductivity by using silicon nanowires. They fabricated an array of silicon nanowires that are between 20 and 300 nanometers in diameter. Nanowire synthesis often involves liquefying a nanoparticle and inducing it to grow, much like a hair. But that produces nanowires with smooth surfaces. The chemical etching method that Yang’s team uses results instead in nanowires that have rough surfaces. The researchers found that wires that are about 50 nanometers wide retain electrical conductivity but have only one-hundredth the thermal conductivity. This results in a thermoelectric efficiency close to that of some commercial bismuth telluride materials.

0 comments about this story. Start the discussion »

Credit: A. Hochbaum

Tagged: Energy, energy, silicon, photovoltaics, thermoelectrics

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me