Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

For example, flat-screen TVs need millions of transistors spread out to control each pixel. For LCD TVs, it’s been possible to use relatively low-performance transistors, which can be made by depositing amorphous silicon onto large pieces of glass. But the next generation of brighter, more colorful, and more energy-efficient displays, such as organic LED displays, require much higher performance transistors created from higher-grade silicon, which can be extremely expensive, making it impractical to coat an entire display with it. With Peumans’s method, it could be possible to use only a small amount of high-grade silicon, thereby cutting costs. What’s more, the devices are already wired together. That’s an important advantage over some other methods for making large-area electronics since “wiring up large-area electronics can be very expensive,” Baldo says.

The ability to use less silicon, and to form orderly arrays of prewired silicon devices, could also be useful for making cheaper solar panels. In conventional solar panels, light is absorbed because the entire panel is coated with high-grade silicon. Now a number of companies are reducing the amount of silicon needed by concentrating sunlight onto smaller silicon chips. For example, one company makes an array of small lenses that focus light onto even smaller silicon solar cells. Peumans says that his method offers a cheaper way of making such solar-cell arrays. Earlier this year, he founded a company called NetCrystal, based in Mountainview, CA, to make such panels, which he expects can be created for a third of the cost of today’s panels.

Peumans is also working with Boeing to develop sensor networks for airplanes. The goal is to distribute high-performance, silicon-based sensors between layers of the composite materials that make up the wings and other parts of new aircraft, such as the Boeing 787. These sensors would be used to determine if the materials are cracking or delaminating. The sensors could decrease downtime for inspections and help maintenance crew spot problems earlier, Peumans says.

Peumans’s technology is not the first attempt to make large-area electronics. Other approaches, however, tend to produce devices that fall considerably short of the performance of chip-grade, single-crystalline silicon. Some researchers, for example, are developing inexpensive methods that use commercial printing techniques to deposit inorganic or organic semiconductor “inks.” But the best inorganic ink-based devices perform about an order of magnitude worse than single-crystalline silicon, whereas organic ink-based transistors are a thousand times worse.

The biggest hurdle in developing Peumans’s approach was showing that the coils around the silicon islands would be strong enough not to break as they unwind, but he demonstrated a way to treat the coils to make them stronger. The next step is to demonstrate functioning devices. He has already developed prototype solar cells and is working on partnerships to develop other applications.

3 comments. Share your thoughts »

Credit: Peter Peumans

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me