Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Aggressive cancer cells are about 70 percent softer than normal cells, according to research from the University of California at Los Angeles (UCLA). The UCLA researchers are the first to mechanically probe the physical properties of live cancer cells taken directly from a patient. The researchers suggest that such nanomechanical tests of cancer cells might be incorporated into future cancer diagnosis and treatment.

Using atomic-force microscopy, chemist James Gimzewski and pathologist Jianyu Rao measured the stiffness of living cells in samples taken from the fluid surrounding the lungs of patients with cancer. Any cancer cells found in these samples have left the patient’s original tumor, indicating that the cancer is spreading. Gimzewski and Rao found that lung, breast, and pancreatic cancer cells in these samples were much softer than normal cells.

The finding is consistent with what is known about cancer cells. In order to spread and form new tumors, cancer cells “need to circulate through narrow blood capillaries and then ooze between other cells into normal tissue,” says Dennis Discher, professor of chemical and biomolecular engineering at the University of Pennsylvania. Being soft and flexible might give aggressive, traveling cancer cells a physical advantage, says Discher.

Clinical detection of these spreading, or metastatic, cancer cells is problematic. Rao says that he examines about five such samples a day and that, under the microscope, some normal cells resemble cancer cells. “It’s challenging to make a correct diagnosis of cancer,” he says. By examining the shape of dead cells under the microscope, and by applying fluorescent dyes that highlight particular proteins on their surfaces, Rao says that pathologists can distinguish cancer cells with about 85 percent accuracy. He hopes that adding a mechanical test will lead to greater accuracy.

Biologists usually focus on the chemical properties of cells, not on their physical properties. In the past few years, nanotechnologist Gimzewski and engineers like MIT’s Subra Suresh have begun applying the tools of materials science and engineering to cells. In 2005, Suresh made some of the first measurements of the physical properties of cancer cells. He and other researchers have studied the physical properties of cells using many techniques, from squishing them between parallel glass plates, to stretching them with optical tweezers, to probing them with atomic-force microscopy, a nanomechanical tool used to study surfaces at high resolution. “This is only the beginning,” says Suresh, referring to the use of mechanical tools to understand the physical properties of cancer cells.

0 comments about this story. Start the discussion »

Credit: Sarah Cross and James K. Gimzewski, UCLA

Tagged: Biomedicine, cancer, nanomedicine, AFM

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me