Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The thing that makes computers a huge pain for everybody, says Pedro Domingos, an associate professor of computer science at the University of Washington, is that you have to explain to them every little detail of what they need to do. “It’s really annoying,” Domingos jokes. “They’re stupid.”

That’s why Domingos is taking part in CALO, a massive, four-year-old artificial-intelligence project to help computers understand the intentions of their human users. Funded by the Defense Advanced Research Projects Agency (DARPA), and coordinated by SRI International, based in Menlo Park, CA, the project brings together researchers from 25 universities and corporations, in many areas of artificial intelligence, including machine learning, natural-language processing, and Semantic Web technologies. Each group works on pieces of CALO, which stands for “cognitive assistant that learns and organizes.”

Adam Cheyer, program director of the artificial-intelligence center at SRI, explains that CALO tries to assist users in three ways: by helping them manage information about key people and projects, by understanding and organizing information from meetings, and by learning and automating routine tasks. For example, CALO can learn about the people and projects that are important to a user’s work life by paying attention to e-mail patterns. It can then categorize and prioritize information for the user, based on the source of the information and the projects to which it is connected. The system can also apply this type of understanding to meetings, using its speech-recognition system to make a transcription of what’s said there, and its understanding of the user’s projects and contacts to process the transcription intelligently into to-do lists and appointments. Finally, a user can teach CALO routine tasks such as purchasing books online and searching for bed-and-breakfasts that meet specific criteria. CALO can interact with other people, taking on tasks such as scheduling meetings, coordinating among people’s schedules, and making decisions, such as deciding to reschedule a meeting if a key member becomes unable to attend.

“It’s an amazingly large thing, and it’s insanely ambitious,” Domingos says. “But if CALO succeeds, it’ll be quite a revolution. Even if it doesn’t, so much good research is happening under it that it will still have been worthwhile.”

The goal is to build an artificial intelligence that can serve as a personal assistant for someone–not something with a rigid structure within which it can be helpful, like the animated paper-clip assistant featured in Microsoft Office products, but a system that can learn about a user’s environment and needs, and adapt to them, without having to be programmed anew by engineers. “What’s different and has never been done before in this way is the truly integrated approach of bringing all of these technologies and all of these capabilities into a single system,” says Cheyer. “It takes a system of this size to give you something that can understand and organize so much information.”

14 comments. Share your thoughts »

Credit: Technology Review

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me