Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In the company’s Cambridge, MA, headquarters, two prototypes show the payoff. One is an e-reader display in bright, vivid color. Touch a button, and an image of a bunch of flowers appears; bring the display outside, and it shines brighter because it is reflecting ambient light. (As with black-and-white e-paper, until a user changes that image, the unit consumes virtually no power.) The other prototype, a six-inch display hooked up to a computer, showed a video clip from the animated movie Cars. It was a bit grainy but was switching frames 30 times per second. Two years ago, the switching time in products with E Ink technology was just one frame per second.

While the video version is still several years from market, “this was a landmark research advance in the history of e-paper,” says Russ Wilcox, E Ink’s CEO. Invoking the long-held dream for e-paper–that it can be an electronic replacement for real newsprint–he added, “You can imagine a USA Today weather chart where clouds are actually moving.”

E Ink is working with several leading display makers to develop flexible transistors that will create E Ink and other color displays that are bendable and even rollable. LG Philips recently announced the world’s first 14.1-inch flexible color e-paper display using E Ink technology. The color version uses a substrate that arranges thin-film transistors on metal foil rather than on glass. And last month, Samsung used E Ink technology to set a new world record in terms of the resolution of a large flexible color display. (Samsung’s 14.3-inch screen has a 1,500-by-2,120-pixel resolution.) No commercialization date has been announced for these technologies.

Other companies are also making advances in e-paper. One of them, San Diego’s Qualcomm MEMS Technologies, has developed a MEMS-based version that can produce video-ready refresh rates and will appear in monochrome and bicolor displays in the next year or so. (See “E-Paper Displays Video.”) But E Ink is generally acknowledged to have the best technology in terms of simulating the look of paper, says Raupp, whose research lab has partnerships with 16 display makers, including both E Ink and Qualcomm. “Put the two side by side–which one looks like paper? There would be no contest,” Raupp says of E Ink and Qualcomm. The move into video and color “expands the application space” and makes E Ink a leading candidate to become a fixture in flexible displays, he adds.

2 comments. Share your thoughts »

Credit: E Ink

Tagged: Computing, video, electronic gadgets, e-paper

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me