Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Zettl explains that the “nanotube does not act as an antenna in the conventional sense.” That is, instead of picking up electromagnetic waves electrically, it picks them up mechanically. This happens because of the nanotube’s natural resonance frequency. As soon as it encounters radio waves that match the frequency, the nanotube starts vibrating in step with the waves, effectively tuning in only to that radio signal. The nanotube’s vibrations change the field emission current, and the mechanical vibrations are converted into an electrical signal. An external battery powers the field emission current and amplifies the radio signal. The field emission is naturally asymmetrical–it allows current to flow only in one direction, just like the diodes and rectifiers used in demodulators. So the nanotube also acts as a demodulator and detects the music encoded onto the carrier wave.

To tune to a different radio station, the researchers change the resonance frequency of the nanotube. They do this by changing the voltage applied across the electrodes. “It’s like tuning a guitar string,” Zettl says. “The electric field pulls on the nanotube.” With the same nanotube, the researchers can cover the entire FM radio band.

Cees Dekker, a nanotube researcher at the Delft University of Technology, in the Netherlands, calls the new radio “an appealing demonstration that very simple devices can be used for everyday [tools].” Whether or not the device is used for sensors remains to be seen, he says, but for now, the simple demonstration is a good start.

6 comments. Share your thoughts »

Credit: Zettl Research Group, Lawrence Berkeley National Laboratory and University of California at Berkeley.

Tagged: Computing, Biomedicine, cancer, nanotechnology, sensor, nanotubes, radio

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me