Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A new type of memory technology could lead to thumb drives or digital-camera memory cards that store a terabyte of information–more than most hard drives hold today. The first examples of the new technology, which could also slash energy consumption by more than 99 percent, could be on the market within 18 months.

“It’s a radically new technology,” says Michael Kozicki, a professor of electrical engineering at the Arizona State University, whose group is one of several working on a version of the new memory. “If it really works as well as everybody thinks it could, it could genuinely revolutionize the memory and storage industry.”

The new type of memory, called programmable-metallization-cell (PMC) memory, or nano-ionic memory, has been under development at the Arizona State University and at companies such as Sony and IBM. It’s one of a new generation of experimental technologies that are bidding to replace hard drives, the nonvolatile “flash” memory used in portable electronics, and the dynamic random-access memory (DRAM) in personal computers. The first ionic-memory prototypes were far too slow for practical use. But recently, researchers have demonstrated that materials structured at the nanoscale could yield ionic-memory devices that are much faster. Nano-ionic memory is significantly faster than flash memory, and the speed of some experimental cells has rivaled that of DRAM, which is orders of magnitude faster than flash.

The memory could also prove easy to make. Recently, the Arizona group published work demonstrating that nano-ionic memory can be made from materials conventionally used in computer memory chips and microprocessors. That could make it easier to integrate with existing technologies, and it would mean less retooling at factories, which would appeal to manufacturers.

Another reason that ionic memory is attractive is that it uses extremely low voltages, so it could consume as little as a thousandth as much energy as flash memory. In theory, it could also achieve much higher storage densities–bits of information per unit of surface area–than current technologies can.

These attractions are largely the result of a new mechanism for storing information. Flash memory stores bits of information as electrical charge, but the smaller the memory cells that hold the bits, the less charge they can hold, and the less reliable they become. The new memory stores information by rearranging atoms to form stable, and potentially extremely small, memory cells. What’s more, each cell could potentially store multiple bits of information, and the cells can be layered on top of each other, increasing the memory’s storage density to the point that it might rival that of the densest form of memory today: hard drives.

Each memory cell consists of a solid electrolyte sandwiched between two metal electrodes. The electrolyte is a glasslike material that contains metal ions. Ordinarily, the electrolyte resists the flow of electrons. But when a voltage is applied to the electrodes, electrons bind to the metal ions, forming metal atoms that cluster together. These atoms form a virus-sized filament that bridges the electrodes, providing a path along which electrical current can flow. Reversing the voltage causes the wire to “dissolve,” Kozicki says. The highly resistive state of the electrolyte and the other, low-resistance, state can be used to represent zeroes and ones. Because the metal filament stays in place until it’s erased, nano-ionic memory is nonvolatile, meaning that it doesn’t require energy to hold on to information, just to read it or write it.

3 comments. Share your thoughts »

Credit: Chakku Gopalan

Tagged: Computing, Communications, nanotechnology, mobile phones, flash memory

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me