Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

TR: Why bats?

MC: They are identical in size to mice and have similar physiology, such as heart rate and body temperature. So we don’t think there will be a level of incompatibility that would kill off the mice. But we also chose bats because we know how enormously different they are from mice. Their echolocation is almost as good as our vision. They can distinguish things on a submillimeter scale.

TR: Can this approach really shed light on something as complex as echolocation, which presumably involves a lot of genes?

MC: We certainly don’t expect to make mice that can fly or echolocate. But those capabilities have individual components that we can study–the various components of the auditory system, for example.

It’s also plausible that these capabilities aren’t as complex as we thought. It’s possible to evolve very complex things with just a few genes. There are two groups of bats: megabats and microbats. People originally thought megabats evolved from primates because their brain looks more like a primate brain, while microbats’ brains look more like rodent brains. But sequencing studies show both types are related to rodents. That shows that it’s possible to develop a brain that looks histologically like ours in a very short time span.

In addition, megabats have a visual system that is more similar to ours than to rodents’. We process different aspects of the visual landscape, such as color and motion, in different parts of the brain and then somehow amalgamate it into one image. Mice have a much simpler system. Megabats are fruit eaters, and so had to discern the color of ripe fruit, just like our ancestors did. The fact that this ability evolved so quickly in bats tells me that just a handful of genes are responsible.

Of course, I’m projecting projects that will take 20 years to complete. But I’m always optimistic about the research and how long I’ll live! I think using your brain keeps you young, so I intend to keep using it.

6 comments. Share your thoughts »

Credit: Brad Nelson, University Health Sciences Center

Tagged: Biomedicine, genome, genomics, vision, hearing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me