Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Since the birth of the first “knockout mouse” in 1989, targeting and altering specific genes in mice has become one of the most common practices in genetics. By letting scientists observe the ramifications of knocking out individual genes, the technique has been crucial to interpreting the meaning of the human genome, which is 95 percent identical to our murine cousin’s. Gene targeting has allowed scientists to build models of human disease and shed light on the biological processes that make all organisms tick. (For a complete description of the technology, download this PDF.)

Earlier this week, the Nobel Assembly in Sweden recognized the importance of gene targeting by awarding the Nobel Prize in Physiology or Medicine to three scientists whose work was fundamental to its development: Mario R. Capecchi, of the University of Utah, in Salt Lake City; Martin J. Evans, of Cardiff University, in Wales; and Oliver Smithies, of the University of North Carolina at Chapel Hill. In the aftermath of the announcement, Capecchi, 70, spoke with Technology Review about the technology that won him science’s most prestigious prize and the genetic mysteries that he hopes will keep him in the lab for years to come.

Technology Review: Gene-targeting technology has shed light on myriad biological mysteries. What are some of the biggest genetics questions left to answer?

Mario Capecchi: Most genetic studies have been restricted to organisms like yeast, bacteria, worms, flies, mice, and zebrafish. The emphasis has always been on what they have in common, but I think the differences between organisms will be just as important as the similarities. Of course, it’s much more difficult to study. The differences between species of mammals or bacteria are extreme.

Fortunately, we can now sequence a genome as complex as our own in a few months. It will be trivial in a few years to generate enormous amounts of genetic information on different species. What is lacking is a way to put that information in a functional framework. What do all these genetic differences mean? What makes a whale a whale and a mouse a mouse?

TR: Are you trying to answer this question in your lab?

MC: Yes. I believe a lot of evolution arises from additive mutations rather than loss of properties. A gene is duplicated in the genome, and then one copy evolves a new function while the original gene is left intact. Starting with an intact genome and adding to it, I hope what will pop out is something that was acquired in evolution.

We’ll use the mouse as a sort of surrogate to understand bats. Why can they fly and echolocate while a mouse of the same size cannot? We hope to create a collection of mice in which an entire set of bat genes is represented.

TR: Wow. How do you do that? Do you put every bat gene into different strains of mice one by one?

MC: No, that would require making approximately 25,000 mouse strains and would be much too expensive. Instead, we’ll transfer large chunks of the bat genome into mice. If we see a signal–the mice have different capabilities, for example–then we can break it down gene by gene.

6 comments. Share your thoughts »

Credit: Brad Nelson, University Health Sciences Center

Tagged: Biomedicine, genome, genomics, vision, hearing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me