Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at MIT have developed a leg exoskeleton capable of carrying an 80-pound load without the use of motors. According to its developers, the prototype can support 80 percent of this weight while using less than one-thousandth of a percent of the power used by its motorized equivalents.

The aim of developing leg exoskeletons is to make it easier for people to carry heavy loads, says Hugh Herr, director of the Biomechatronics Group at MIT and leader of the research. By designing mechanical structures that transfer much of the load directly to the ground, rather than via the walker’s legs, it should be possible to enable soldiers and firefighters to carry heavier loads while reducing the risk of injury and the amount of metabolic effort they expend in doing so.

To date, most exoskeleton research has focused on using motors to carry the load. Not only is this expensive, requiring large power supplies and frequent refueling, but it also tends to be noisy, which can be a problem for military applications. Conor Walsh, a graduate student at MIT who also worked on the exoskeleton, says that the system “is much quieter than the powered exoskeletons” and only slightly noisier than normal human walking.

Working with Ken Endo, also an MIT graduate student, Herr and Walsh have taken a quasi-passive approach. Their mechanical system is specially designed to follow the movement of the wearer’s legs and mimic some of the energy-storage strategies that legs exploit to reduce muscle work.

When we walk, the muscle power required to swing our legs is minimal because of the pendulum-like exchange of gravitational potential energy and the kinetic energy of our limbs. Our muscles also provide a degree of elastic energy storage to help joints flex, which again reduces the amount of overall energy that walking requires.

The MIT exoskeleton works using similar principles. The payload worn on the user’s back is attached to two leglike mechanical structures that run parallel to the user’s legs. These structures have elastic energy-storage devices at the ankle and hip, and a damping device at the knee joint.

In simple terms, the springlike joints take advantage of the user’s motion and payload to store energy. For example, as the heel of one foot makes contact with the ground, the continued forward motion of the body will cause springs in that hip and ankle to be compressed. These springs help propel the leg forward at the next stride.

A variable damper in the knee joint lets the leg swing freely as it moves forward. Then, as the heel strikes the ground, the damping is increased to prevent the knee from buckling under the weight of the payload.

8 comments. Share your thoughts »

Credit: Samuel Au

Tagged: Computing, MIT, muscle, kinetic energy, exoskeleton

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me