Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Yanik’s chip should also speed up whole-genome screens that help researchers understand which genes are necessary for vital processes, such as the ability of nerve cells to recover from injury. “A lot of the genes in worms … function in the same way as they do in higher organisms,” says Richard Roy, associate professor of biology at McGill University. Specifically, Yanik’s chip could help speed up experiments in which researchers silence every single worm gene and watch what happens to determine which genes are necessary for which physiological processes.

Yanik is using the chips to study the genetics of nerve regeneration. He developed a highly precise, intense laser for performing microsurgeries on the worms. The laser allows him to very precisely sever a single branch of a neuron without damaging the surrounding tissue. Yanik silences each gene in the worm’s entire genome, one gene at a time, then severs neurons in each worm and watches the outcome. If a worm with a particular silenced gene can’t heal the damaged nerve, that suggests that the gene plays an important role in the healing process.

Speeding up studies of the worms could have broad implications for genomic medicine. The worms provide a particularly good model of the human nervous system, and they’re also widely used to study development, with implications for human developmental disorders and cancer, Roy says. Yanik’s chips, if they live up to their promise, would be a huge improvement in speed, volume, and precision over what’s currently available.

0 comments about this story. Start the discussion »

Credit: Mehmet Fatih Yanik, MIT

Tagged: Biomedicine, MIT, genome, neuroscience, disease, Parkinson's, micrscope

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »