Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

There are no cures for debilitating neurodegenerative diseases such as Parkinson’s, and researchers still don’t understand what causes brain cells to die in patients suffering from these diseases. But MIT researchers hope to speed up the quest for answers and the search for therapies in an unlikely test subject: worms.

Mehmet Fatih Yanik, assistant professor of electrical engineering and computer science at MIT, is developing microfluidic devices that could greatly facilitate experiments, including whole-genome screening and drug testing, on small nematode worms called C. elegans. They are a favorite subject of biologists and medical researchers because the worms are tiny and transparent, and researchers can do experiments with them that are not possible with larger animals.

Yanik’s polymer chips have two layers of channels. One layer is “like a maze,” he says. In this layer, the one-millimeter-long worms are shuttled and sorted at high speed. The channels are only a few hundred micrometers wide and hold very small volumes of liquid. The upper layer is what Yanik calls “the plumbing.” It contains valves that control the flow of liquid and worms.

Suction channels allow researchers to immobilize the worms for imaging on a high-resolution microscope. The nematode worms are made up of fewer than one thousand cells, each of which can be seen under the microscope. Using Yanik’s chip, “you can see neurons die in real time” in the live animals, says Richard Nass, assistant professor of pediatrics and pharmacology at Vanderbilt University Medical Center. Imaging at this level of detail and speed is impossible in larger animals, and older worm systems can provide blurry images because the worms are free-swimming.

Nass developed the first worm model of Parkinson’s disease. In it, the animals are treated with a toxin that kills dopamine neurons. On the chip, worms can be sorted using visual signs of how the toxin affects their nerves. Such an experiment takes about six months using conventional techniques, says Nass. On Yanik’s chip, it takes one month.

As part of a collaboration with a major international drug company, Nass is using the chips and his worms to discover possible Parkinson’s therapies. Humans have tens of thousands of dopamine neurons connected to tens of thousands of other neurons, says Nass. The worms only have eight dopamine neurons, yet “at the molecular level, their nervous system is almost identical to the human nervous system.”

In one type of experiment possible with the new microfluidic device, worms on the chip can be treated with compounds for high-throughput drug screens. Such automated drug screens, which are currently performed on single cells, have not been practical in whole, live animals in the past.

0 comments about this story. Start the discussion »

Credit: Mehmet Fatih Yanik, MIT

Tagged: Biomedicine, MIT, genome, neuroscience, disease, Parkinson's, micrscope

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me