Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Powered by $77 million in new investment, startup Heliovolt, based in Austin, TX, will build a factory next year for mass-producing a new type of solar cell that could, in much of the United States, make solar electricity as cheap as electricity from the grid. The company will be scaling up a new manufacturing technique that could produce high-performance thin-film solar cells more reliably than other methods.

Heliovolt is one of several startups developing a type of thin-film solar cell that converts light into electricity with a micrometers-thick layer of a copper-indium-gallium selenide (CIGS) semiconductor. Thin-film solar cells are attractive because they could produce electricity cheaper than conventional silicon solar cells. Although thin-film cells produce less electricity per square meter than conventional silicon solar cells do, they make up for this by using orders of magnitude less active material per square meter. This can result in significant savings. For example, generating one watt of electricity requires about 80 cents’ worth of silicon, but it only requires a penny’s worth of a semiconductor used in a thin-film cell, says John Benner, who manages electronic materials for photovoltaics research at the National Renewable Energy Laboratory (NREL), in Golden, CO. (Heliovolt is working with NREL to further develop its cells.)

The challenge has been to reliably make thin-film solar cells at a large scale. In the lab, CIGS solar cells have shown the highest efficiency of any thin-film cell (19.5 percent), exceeding that of some types of silicon solar panels made today. But, while no one expects to reach this level of efficiency in mass-produced cells, it has proved difficult to reliably make them with even a minimum level of efficiency needed to compete with other types of solar cells.

Heliovolt’s new manufacturing method, however, could prove more reliable than others, Benner says, by providing more control over the composition of the semiconductor film.

In a typical process, the precursor materials are printed or sputtered onto a surface, where they combine to form the final semiconductor material. This doesn’t provide much control over the chemistry and microscopic structure of the material, he says. In particular, it can allow atoms of selenium, a volatile element, to escape, altering the electronic properties of the material. Having too few selenium atoms can “kill a cell,” says Heliovolt’s CEO, Billy Stanbery. In the Heliovolt process, which Stanbery developed, the semiconductor is made in two steps. First, films of cadmium selenide and indium selenide, which are relatively easy to make reliably, are deposited on two flat plates. Then these plates are brought together and, through a combination of electromagnetic attraction and heat, fused together. Benner says that this process keeps the selenium from escaping, since it’s trapped between the two plates.

20 comments. Share your thoughts »

Credit: Heliovolt

Tagged: Energy, renewable energy, solar power, solar cells, efficiency

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »