Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The popularity of Apple’s iPhone illustrates that large, good-quality screens matter on mobile devices. But the larger the display, the more battery power it uses. Now, a startup called Unipixel, based in Woodlands, TX, claims to have a design for a handheld display that is 60 percent more efficient than traditional displays. The net result, says Tod Cox, vice president of engineering at Unipixel, is that the displays can double the battery life of a cell phone. The company is partnering with a major display manufacturer, says Cox, and expects to have a prototype ready by the end of the year.

Unipixel’s design uses many of the components found in existing displays, such as low-power light-emitting diodes (LEDs), but it puts them together in a novel way that provides a high-contrast picture that consumes less power and costs less to manufacture. “Other folks have tried to invent new technologies to bring to market, and they’ve required new materials and new processes, and that’s been problematic,” says Cox. “What we’re trying to do is learn from the past and use what’s available today.”

Liquid-crystal displays, the technology with which Unipixel is competing, use LEDs to backlight a display, explains Cox, but in order to produce an actual image, this light must pass through a series of filters and light polarizers. As little as 5 percent of the original light can make it from the LEDs to the viewer, depending on the manufacturer. By contrast, says Cox, Unipixel’s displays allow 61 percent of the light through. This light can be used to make the screens brighter and more easily readable in the daylight, but the brightness can also be dialed back to allow for power savings and extended battery life. The trick to Unipixel’s display design is to remove the backlight and all the filters that are used in a liquid-crystal display and illuminate the screen using LEDs along its edge.

Light that is shined into the edge of a material, such as glass or plastic, can be trapped inside it, depending on the optical properties of the material and the surrounding medium. The same concept explains why bits of data can travel along miles of fiber-optic cable without much loss. In the case of Unipixel’s displays, LEDs shine into the edge of a glass or plastic screen. Light stays trapped inside the screen when the surrounding medium is air, but when another material comes in contact with the screen, the trapped light scatters and shines out of the surface. To create an image employing this process, which is known as frustrated total internal reflection (FTIR), Unipixel uses a membrane with microscopic structures on it that bend light toward a viewer. This membrane is separated from the screen by a thin air gap. When the membrane comes in contact with the screen, a pixel turns on, letting light out.

2 comments. Share your thoughts »

Credit: Unipixel

Tagged: Communications, Apple, iPhone, displays, mobile phones, efficiency, LED

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me