Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Data density on hard disks has roughly doubled every year for the past 30 years, and to keep up, researchers have made smaller and smaller sensors to read the tiny bits stored on a disk. Today’s hard disks pack a mind-boggling amount of data–more than 200 gigabits in a square inch. But as the industry gears up for densities of up to one terabit per square inch, the sensors are reaching their physical limits.

Researchers at the National Physical Laboratory, in Teddington, UK, are now proposing a novel sensor design to read the bits on a hard disk. The design, published in the Journal of Applied Physics, is based on a different magnetic effect than current read heads. It could lead to much thinner and smaller read heads that are suitable for data densities as high as one terabit per square inch, says lead researcher Marian Vopsaroiu.

The new sensor would also use slightly less power than current read heads–an especially useful feature for laptops and MP3 players. And it could improve the speed of the reader. “You could read back data ten times faster,” Vopsaroiu says. “Instead of one GHz, you can read at five to ten GHz.”

Laptops and computers currently use the magneto-resistance effect to read hard-disk data. Hard disks store bits magnetically; depending on the direction of a bit’s magnetic field, it can represent a bit 1 or 0. As the read head flies over the disk, the magnetic fields of the bits cause a corresponding resistance change in the read head’s sensor. The resistance can’t be measured directly, so it’s first converted into a voltage using a direct current. (The voltage is equal to the current multiplied by the resistance.) In order for the whole thing to work, a current must run continuously through the sensor.

The new sensor will not need this constant current because it uses the magneto-electric effect. Materials that display this effect have coupled electric and magnetic fields: their electric field changes in response to an external magnetic field, and vice versa. So in the new sensor, a data bit’s magnetic field will directly generate a voltage instead of a resistance. “Each time you fly on top of a recorded bit, [it] would induce a pulse voltage which is positive or negative depending on the orientation of a bit,” Vopsaroiu says.

The sensor is a stack of seven layers made of materials with different magnetic and electric properties. Together, they interact and display the magneto-electric effect.

Current read-head sensors, by contrast, contain 15 layers, so they have to be thicker. “It is almost impossible to make a 15-to-20-layer stack in a 10-to-15-nanometer space,” Vopsaroiu says. His design, he calculates, could lead to sensors thinner than 10 nanometers, with a data density of one terabit per square inch.

4 comments. Share your thoughts »

Credit: University of St. Andrews

Tagged: Computing, memory, sensors, data storage, magnetics, hard disk drive

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me